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PREFACE

These notes are intended to supplement the tutorial lectures for the

workshop by filling in a few details left out in the lectures. Thay are not com-

plete, but are simpl7 what was available at the time. We expect to have a

draft of a complete set of notes for the material presented n the tutorial by

the end of the year.

Many people contributed to these notes, although most are probably

reluctant to admit It They begsn as a very sketchy act of research notes

that I developed, and have been somewhat rewritten by myself and the other

authors. In particular, Chang-Chih Chu wrote most of Section Z3.3 on the

Solution of the Algebraic Riccati Equation and helped throughout Bruce

Francis wrote most of Chapters 2.2 and 2.4 on Stabilization and Approxima-

tion. Pramod Khargonekar also helped throughout, but particularly with the

method'of proof used in Section 2.3.4 on Inner-Outer Factorization. Gunter

Stein. of course, was the prime motivator of the whole tutorial. Whatever

seems enlightening and clever about the presentation is prribably due to the

other authors. Any obfuscation is probably mine alone.

There are obviously lots of deficiencies In these notes. There are essen-

tially no references, because we're trying to take credit for most of the con-

trol theory research of the last twenty years. Actually, we just didn't get to

them. Ditto on most of the introductions to the chapters. The introductions

were supposed to ntivate the tecinmcaL details in the subsequent sections,

but hopefully the tutorial lectures will do that. There are probably lots of

typos, and whole sections that are in the table of contents haven't been writ-

ten.Y

C.4 . /, 5
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0.0 Notation

SYMBOL USAGE

S d
- (t) : C M

a

L. (X*Y)(t) := =Ct-r)V(,')dr"

2. A* a compLex-conjugate transpose of complex matrix A

3 r z adjoint of operator P

1(t) = unit step functions
14., 6 (t) : unt impuise

s G(s) = two-sided Laplace transform of g (t)

J, ZL=u orthogonal complement of Z

V(A) = largest singular value of matrix A

p p(A) = spectral radius of matrix A



0. L 1 Function Spaces

contlinous time domain

Lg(IR.C"'n): Hilbert space of matrix-valud functions oa with inner

product

4f"g>:= jr tace .I(t()J&

Ra(ICX"): subspace of functions zero for t <0.

H2(IR.c m L : subspece o functions zero for t >0.

PH, andPH- the orthogonal projections from L2(R-C") onto

H2 (RC' ) H(P-C"').L respectively.

Contlnuous frequency domain

J R -maginary axis.

La(JRC " ): Hilbert space of matrix-valued functions on j IR with inner

product

<F,G> :=--r-trace[F(jw)"G(jw)Jdw.

H2(j].CM'6): subspace of functions F(s) analytic in Re s>O and satisfying

s jtrac~,r(c~jc



LURI): Ranath spa~ce of (assentiatiy) bounded mtrix-valuad

fimL'o=, with n~orm'

H.URCII"): subspac* of ftmotiotm F(s) enalyda &id 'bounded In Re x >0.

.FW; , Pli the 01 heoal prjct.1o= EM L rz ~4T1'v111) onto'

Prft R denotes realr~aional =~d the pre~x B denotez the unit beIX.

?he symbol R,(f) denotma proper rea-ational mtricas. Stiraas the

spaces a~re abbmeiated a.s Lz(R), ae. or as La., atc. whan eczmtext deteiinea

the argunints.

The Fornier trsn form Yields the fo owlng (i.,ometric] isomorphixnsx

f -(' C " ~j~ ) L12UIR, )

Itas astenorm of the operatorcnrestricted to I2Cjon operato
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o.2A1 CocntrollaWlUty and Omervability

Consider the system

.- ,+u , z(o)0. (1)

The system or the pair (AB) is con*roabLa if, for each time tj>O and fnal

state X1, there exists a (continuous) input u(*) such that the solution of (1)

Satisfies M t

Theorem 1

The following are equivalent

(1) (A,3) is controllable.

(U) The matrix [. AS. AB ....I has independera rows.

(iii) The matrix kA-Vf. BI has independent rows for al X in C

(lv) The eigenvalues of A+BF can be freely assigned by suitable choice of F.

The matrix A is said to be stable if all its eigenvalues satisfy ReX<O. ne

system. or the pair (A.B), is sabU.zable if there exists an F such that A .BF

is stable.

Theorem 2

The following are equivalenc

(1) (A.B) is stabilizable.

(ii) The matrix [A-XLB] has independent rows for all ReXAk0.

We will now consider the dual notionw of obaervabL±ty and detectability

with the system

=Ax , z(O) = z
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The system or the pair (C.4), is obsr%,ble Ui for every tl>O, the function

Y(t), t C htj Il uniquely determines the initial state a:,.

Theorem V:

The following wre equivalent:

(i) (C,A) i observable.

C

CA'

(Hi) The matrix CA hs independent columns.

(iii) The matrix has independent columns for al X in C.

(iv) The aigenvalues of A+HC can be freely assigned by suitable choice of H.

(v) (A'.,C') is controllable.

The system or the pair (C.A), is detetaWLe if A+.HC is stable for some

H.

Theorem Z:

The following are equivalent:

(1) (C,A) is detectable

(iii) (A',C'5) is stabilzable.



O.Z2 Transfer Functions

Consider the linear. tlme-invarlent. ordinary differential equation

described by

S=A + Du

where z(t) C R "is the state u(t) c R Imis the input, and y(t) R P is the

output. The A.B,C, and D are appropriately dimensioned rel matrices.

Associated with (1) is the convolution equation

V(t) - (g,*u)(t)

g(t) = CeAtB31(t) + Dd(t) (2)

and, upon taking Laplace transforms, the risulting transfer function is

v(s) = G(S)u(s)

G(s) C(sl-)- B + D (3)

To expedite calculations involving transfer functions the notation

C(sI -A)- ., D (4)

will be adopted. Note that [~ a relbokmtintarnsrfuc

tion. The prisduct of tro transfer functions is, of course, the cascade of the

two systems or just the multiplication of two rational matrices. The conven-

tion will be adopted that the product of a matrix and a transfer function is a

transfer function defined as
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11 X 2Jk JB 11A+X 12CiX11B*X 12D" (5)

A similar convention hclds for right multiplication by a matrix.

Suppose G(s) is a real-rational transfer matrix which is proper, La., ana-

lytic at s =-. Then there exists a state-space model (A,B. C.D) such that

G B. (8)

The quadruple (A,BC,D) Is csJVed a tweaixaion of G. A realization is

tm iIf A bas minimal dimension. It is a fact that a realization is minimal

if and only If (A,B) is controllable end (C4) Is ob3ervable.

A basic object of study will be the transfer function and it will be

assumed to have a realization. The next section describes standard opera-

tions on linear systems in terms of transfer functions and their realizations.



0.2.3 Operations on iUnear Systems

c, D D D

2. Cangae oaibe

G1 --. =

I C21D21

G1G= CID: t~1-Alz1

[At B1CsBI1 Ag 0 . 1

Note: This realization may not be minimal-

. Change of Variables

x T'S

A -0 J f A~ flB 0

LCJ DI IC ID] to R0 RJCID10

[T7-1 BP

3. State Feedback

u - 1a + F:
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4. Outpuzt Injection

iz Az+Bu = t+Bu+H

5. Transpose (Dual)

G- GF

-C?

6Conjugate

7. Inversion

Suppose D is a right (left) inverse of D. Then Gt =LDTC I D T 1

a right (left) inverse of G.
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Proof: The right inverse case will be proven and the left inverse case

follows by duality. Suppose DDt  I. Then

A BDTC BDt
WG 0 A-BDT -B17

D17C DDt

44 Dt C IEDt
0 A-BDtC I-Dt

.C II

Conuatinthe stateby10  theLeft and on the right

yields A 0 0l
G7 r  0 A-BDrc -B6

=I 0

Corllary 7 Suppose Dt is a right inverse for D and let

Then

= DZ.

__ .7 SI_'ppre /Tr i% a left inverse for D and let

T-BDC e-BnI

Then
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ZD.

The following lemma characterizes the relationship between zeros of a

transfer function and poles of its Inverse.

8. Lemma Suppose G a W with D nonuinguler. Then there exists

(s,. zg) such that

(A - BD-C)z, = s,, . Cz,,O

Iff there exists u, 0 uuch that

G(s,.),. =0

Proof

(if )

G(s)u, = 0 implies that G 1(s) has a pole at s,. Thus B(S,, x,) such

that Cc, 0 0 and

(A-BD-IC)a, R Sz,

Set . u, a -D-1CZs0. Then

G(s,)u , C(s,.I-,)-A'Bu, + Du, = -C, =0



0.2.4 linear Matrix Fquations:

Property 1 : (Scduu of Sylvester Equations)

Consider the Sylvester equation

AX +X C (i)

where A C MI, B C 1RI"', C £ 211 are given matrices.

Then. there exists a unique solution X C N xm If and only if

Ret((A) + 4j(B)] 0, . 1 ........ and 1 ........ m.

Remark:

In particular, if B = AF , (1) is called the 'Lyapunov Equation" and the

ncessary and sufficient condition for the existence of unique solution will be

that Re[;\,(A) + ?V(A)] , 0, t' . ........ n.

Property 2: (Solution of Lnear Equations)

Consider the linear equation

AX=B

where A C ", B C W, are given matrices.

The following statements are equivalent:

(1) there exists a solution X e Mnm.

(i) the columns of B C, Range (A).

(iii) Lr IA & ja AI.

(iv) Kar (AT) C Ker (B T )



0.3.1 Gramnien and Balanced Realizations

Suppose G= B where A is stable. Deine the

conUbilitygramim~ Y as

Y fe'BB'e~tdt

and the obstabt gnmian as

X EA' Cr¢ s-& t.

By considering the correiponding matrix differential equations It is

easily shown that Y and X satisfy the Lyapunov equations

AY + YAI + BB' =

A'X - XA + C C= 0

Note that YAO and X O. Furthermore, the pair (A.B) is controllable iff Y>O

and (C.A) is observable Iff X>O.

Suppose the state is transformed by nonsingular T to 2 Tz to yield the

realization

G- th [TAT-' I DI

Then the gramians transform as = 7T' and I = (T" 1)XT-'. Note that

R = T IMT ,o the eigenvalues of the product of the gramians are invariant

mder state triisformation.

Corz.ider the similarity transformation 7 which gives the eigenvector

decomposition
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YX = TA7- 1 , = diag(l,....1)

Then columns of T are (possibly nonunique) eigenvectors of 2" correspond-

ing to the eigenvalues ! {. It is shown in Lemma I at the end of this section

that Y2 has real diagonal Jordan form and that M. . This is a consequence of

YbtO and XO.

Although the eigenvectors are not unique, in the cue of a minimal real-

zation they can always be chosen such that

= YT" = ,
=(7").X7-1 at E.

where E = diag(axe ..... , ,) and E = A. This new reallation will be

referred to as a balanced realiation (also called internally balanced).

Suppose G = {LJ is a balaned realiation for G and can be parti-

tioned as

All A12 1B1

with corresponding partitioning of the balanced grumian E 1:. Sup-

pose 1Z2 dga(~1 4 1 C*c, - - -C) &nd
ajz~2;!: ;ta Thsa it is Irmediate that the truncated

system

Wilr , 11

f., I D j

is balanced siLa ce
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AIIE, E £1' BIBI' 0

Ajj'E+ E A C'C2 0.

It can also be shown (Silverman and Pernebo) that a mMmui realization for

is stable, although in certain (non-generic) cases All may have uncontroll-

able or =nobservable jc.-axis eigenvalues.

Lemma I Product of Positive Semi-Dednite Matrices is Similar to a Positive

Semi-fDenite Matrix

Proof: Let X and Y be positive semi-dednite. First perform an orthogonal

transformation so that

X - 0 0 Aj>O diagonal. Y bY12' Y22 0

By this transformation Xr is similar to 0 . Now

[At Y1 A, Yia = [ oj[MIYIIAI AIY,1]f- 0 o

and it is easy to find a matrix Z such that

[IYiiI A] [o %]XlYiM M 2[ .-z1

(Z exLsts because the columns of A1Y 11 span the columns of AiY 12 owing to

the fact that Y is positive semi-denite). The left hand side of this last equa-

tion is positive semi-dednite and similar to XY. If X7sO It is possible to fnd

a matrix T, such that



T1 ASTI A =diag{CIN XK.. ... '

where Xja~jk... 4AX1 >O.

Now consider two Sramians X and Y. Let us suppoie XY#O0, so that T,

can be chosen as above:

=rXT A =diai{(Xi. .xO...*0)}

where X jaAAO Under this transformation the gramians become

Q zTr'X(7'j1 ),. R :- TI17T1,

and QR=A. Because Q and R are symmetric, RQ=NA=QR and so QR and A

commute. Both Q and R must leave the eigenspaces of A invariant and so

are of the form

Q =diag{ i QE

R = da

where q~ is a square matrix whose size equals the dimension of the Xf, eigen-

space of A and £F=O where E and F are square matrices the size of the kar-

nel of A. Of course, all the Q's are summetric so it is possible to 6nd an

orthogonal matrix

such that W'Q(W-1)' and WjF4 1 are diagonal. Note that this same W

gives a diagonal J'tRW cid leaves A alone.
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The tra--.formation 72= T1 W diagonalizes both grui~ns. It is now obvi-

ouis how to construct T3 so tbn~t Tj'X(Tj"' and 73'YT5 are diagonal and the

controllble and observable portions are equal.



0.3.2 Inner Transfer Functions

Let G = c Then G is Inner If G001 end co-inner If GG~.Nt

that G need not be square. Inner and co-inner are dual notions and are often

called all-pass.

If G C RTem , P>m i.s inner then any G.L C-P-"0'm is called a comple-

mentary inner faotoi- (CIF) if [G o4 is square end inner. The dual notion of

tomplementary co-inner factor is dedned in the obviouz way.

The following lemma L- useful In characterizing inner transfer functions

in terms of a realization.

Lemnma 1. Suppose 2 X=X R E"' such that

i) AX XA *CCO=

ii) B'X D'C = 0

Then G00 = D'D.

Proof: Suppose that I) and i) hold. Then conjugating the state of

fA 0 BI
G0G =-C'C -A' -C-DI

0 i 1 on the left and [!X 01 1 [ a n the right yields

GOG =f(A'X4XA4CC) -A, I-(X.J.(1
I BX+D'C B' I D'D 1

Now, applying i) and ii) yields
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0 1 B
0.0 0 -A'0

-D'D

By duality, we have the following

Lemma 1' Suppose 2 Y= r C Ell such that

i) AY +YA + B= 0

U) CY + DB' r- 0

Then GG=DD'.

These two lemmas immediately lead to one characterization of inner

matrices in terms of their state space representation. Simply add the condi-

tion that DDI (DD'=I) to lemma 1 (1') to get GG1 (G*=). Further-

more, by adding a few additional assumptions, the conditions in the lemmas

become necessary as well as sufficient. This leads to the following complete

characterization of stable inner transfer functions in terms of a minimal

realization.

A4B
Suppose G= [c v is stable and minimal. Then the gramians X and Y

satisfying

A'X +XA .CC - (2

AY +YA' +BB'=0 (3)

ez~i't and are unique.

Corollary 1 G is inner if



i) .B'X +DC =O0

11) DID =1I

Cordlauy 1 G Is o-inner if

1) CY+DB'0o

ii) DD' Z I

Proof Suffciency of i) and ii) follows immediately from the lemmas. For

necessity, suppose CGGZ. From 1) and 2) this implies that

DID =f (5)

Since (AB) is controllable, (4) implies that B'X+DC0. The co-inner

case follows by duality.

This characterization of inner transfer functions plays a central role in

the synthesis theory. It allows the cownz"Intion of inner transfer functions

by solving algebraic equations.



0.4.1 Lxnear Fractlonal TI-ansformations

Suppose P = IPR P22 Z'' 4' A I R, K C 1;,p. we

will adopt the notation

and

F.M(P1) 11 PM + P21A(I-PIIA)1 'PI2  (2)

The linear fractional transformations (LM~ are illustrated In Figure 1.

Thae I denotes that the second argument is fed back in the lower block. and

the uL denotes feedback in the upper block.

An important property of LFTs is that any interconnection of LF~s is

again an LFT. Suppose Ir ,21 * Then

F~TF,(,A)=Fu(T.A) (4)

where

1P "P12 %rI(Z -P 22%Y Pz P (Z1I 1P 2Y 1 (5)

Equations (3) and (4) are illustrated in Figure 2. Note that if F'1(J.,Q) is a

parame trization of a c ontroller, Ft (T. Q) is. afine if and only if 722= Q. This

type of controller parametrization wil play an important role in the syn-

thesis theory.
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This part of the notes describes recent results on the problem of analyz-

ing the performance and robustness properties of systems. We believe that

tle approach described Is providing the foundation for a new paradigm for

ntrol theory broader in scope and content than that of Classical or Modern

"ntrol Theory. An important aspect of this new paradigm is the treatment

. lives to model uncertainty.

Modern Control Theory, the dominant paradigm for the past 20 years,

v.s its basis in Stochastic Optimal Control and Estimation Theory. This

th-iory essentially restricts model uncertainty to additive noise. The theory

provides a methodology for analyzing the impact of noise on system perfor-

mance and synthesizing to reduce that impact.

The inadequacies of this view of uncertainty became widely accepted in

the Late 1970's. as robustness to plant uncertainty became a major theme in

the Modern Control Theory community. Ironically, this involved a renewed

interest in the Classical Control paradigm which Modern Control displaced

within the theoretical community (if not among practicing engineers). This

new direction provided useful design tools, including Singular Value Analysis

and Multivariable Loop Shaping.

While providing an important perspective, as well as practical tech-

niques, the methods based on singular values still require rather restrictive

assumptions about uncertainty. In particular, plant uncertainty must essen-

tially be modelled as a single "unstructured perturbation."

The Structured Singular Value (SSV), jA, was developed several years ago

to correct this defciency in singular values. In the context of the general

framework discussed in this memo, the SSV provides a very powerful

mathematical tool for the analysis of complex systems. Indeed. we believe



that this framework together with the SSV and the pynthesis techniques dis-

cussed later, has the potential to form the basis for a new paradigm for con-

trol theory.

The remainder of this part of the notes describes the general framework

for control system analysis and synthesis which includes all the viewpoints

discussed as special cases. In particular, the assumptions about uncertainty

required by each methodology are compared. In this context, the words

analysis and synthesis have specidc meanings.

Analy3is is used to describe the process of determining whether a given

system has the desired characteristics. In general, this may range from the

use of mathematical tools to simulation to experimentation, although

analysis is typically applied primarily to describe the former. Synthesif on

the other hand. is the process of finding a particular system component to

achieve desired characteristics, which are typically expressed in terms of

some analysis tools. Analyss and synthesis are just two aspects of the more.

general problem of engineering design

The discussion which follows first considers analysis, then briefly

touches on synthesis and ends with some illustrative examples. The next

part on Synthesis Theory will take up that question in more detail.
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1..1 General Framework

Various modeling assumptions will be considered and the impact of

these assumptions on analysis and synthesis methods will be explored. Con-

sider the diagram in Figure L This is the general framework to be con-

sidered. Models of this form are typically constructed from components

which also have this form. The nominal model provides the basic intercon-

nection structure between the signals, perturbations and controller, as

shown. it has three inputs and outputs, each consisting of a vector of signals.

As typical examples, consider the following filtering and control prob-

lems. First a simple filtering problem is given in the diagram in Figure 2.

This may be rearranged as shown in Figure 3 to fit the general framework. In

order to simplify the diagram, no perturbation was Included.

A typical control problem might look like the diagram in Figure 4 where

again, for simplicity, no perturbations are included. This too can be rear-

ranged to fit the general framework. although the diagram is complicated.

Any system may be rearranged to fit the form of this general frame-

work. Although the interconnection structure can become quite complicated

for complex systems, many software packages are available which could be

used to generate the interconnection structure from system components.

Note that uncertainty may be modelled in two ways, either as external

inputs or as perturbations t the nominal nodeL The performance of a sys-

tem is measured in terms of the behavior of the outputs or errors. The

assumptions which charac .riz LUc n== p1

model determine the analysis techniques which must be used.

The most fundamental assumption that is made throughout is that the

nonunal model is a fnite dimensional ordinary differential equation and is



linear and time invariant (LTIODE). The uncertain inputs are assumed to be

either iltered white noise or weighted 4 signals. Performance is measured

as weighted output variance or weighted output Lp norm. The perturbations

are assumed to be themselves LTlODE's which are norm-bounded as input-

output operators. Various combinations of these assumptions form the basis

for a&Tthe standard linear systems analysis tools.

Given that the nominal model is an LTIODE. the interconnection system

has the form

P P12 pis

Psl P7, P3
IA B, B2 B31

CI D11 D12 D13 i
C2 D2, D22 D2
Cs Ds, Du Dmi

and the total system is a linear fractional transformation on the perturbation

and the controller given by t

a = (F(,))

- F(F(PA).K)U (2)

Since the focus of the current discussion is on analysis methods, the

controller may be viewed as just another system component and absorbed

into the interconnection structure. Thus the analysis framework reduces to

the diagram in Figure 5 where

a Fg(P,A) U

1 P21A(-PIA)"P=2] (3)
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Note that the P's in (2) and (3) are not necessarily the same. Table I

and the discussion which follows summarize the various assumptions and

resulting analysis and synthesis tools. In each case, stability of the nominal

must be evaluated. Since P is assumed to have the state-space representa-

tion

P C- D'ID 1 '2A: 21 D2
C Dzi z=J

this may be done by checking that all eigenvalues of A lie in the open lhp.

There are alternatives to this approach but, for simplicity. it will be assumed

that the nominal plant. with controller is closed loop stable in the sense that

all eigenvalues of A are in the open lhp.

Given nominal stability, the entries in the table may be interpreted as

Mling in the following general performance/robustness theorem:

General Analysis Theorem (GAT)

Given

Input Assumptions

and

Perturbation Ammptions

Thgn

Performance Speciecation

if and only if

Analyms Test



The details of each cawe -will be considered in the following sections.
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1.2.2. Stochgetic

Case le ltnvolves unit covariance white noise input with output variance

as the evaluation criteria. Since no perturbation is allowed, the problem

reduces to the diagram in Fgure 1 and (to) 22112. Note that colored

noise or weighted variance could be used as shown in Figure 2. This reduces

to the general case by absorbing the weights W, and W2 int6 PU as

P2 = W2 GW. In practice, it is essential to use weights to reflect spatial and

frequency variations in inputs. perturbations and output cpecifications, but

in every case, these weights may be absorbed into nominal model

In Case lb the input is an uncertain delta function, which is equivalent

to uncertain initial conditions. The performance specification is the

expected value of the Lz-norm of the output.

Case 1 forms the foundation of Stochastic Optimal Control Theory. Case

la includes the standard linear stochastic filtering problem and Case Ib

includes the standard linear quadratic optimal control problem These are

combined to obtain the full LQG problem which is again Case la. These

assumptions and resulting analysis methods have been the dominant para-

digm in the control community for over 20 years.

The development of this paradigm has stimulated extensive research

efforts and been reponsible for important technological innovation. particu-

larly in the area of estimation. The theoretical contributions include a

deeper understanding of linear systems and improved computational

methods for complex systems through state-space techniques. The major

limitation of this tY ory is the lack of formal treatment of uncertainty in the

plant itself. By allowing only additive noise for uncertainty, the stochastic
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theory ignored this impotant pra.ctical issue. Plant uncertainty is particu-

larly critical in feedback Myterna.
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1.2.a L. Frequeny D-Imain Methods

Case 2 involves an attempt to correct some of the defiiencies of Case 1

by moving to an unown 'but bounded (in an L 2 sense) framework. This

allows both types of plant uncertainty to be handled in a common framework.

albeit in a limited manner.

Case Za Is an L 2 version of Case la. The input is constrained to lie in

BL2 as a time signal (unit ball in L2) and the performance is specified in

terms of the output's Le norm. With no perturbation, the analysis test

involves simply the La induced operator norm. Le. L.. on the transfer func-

tion P22.

*The GAT in this case is

Theorem 1 119 112:9 1 for all IHI 12: 1

Although this theorem is & trivial restatement of the defnition of induced

norm. it means that the-analysis test is an exact characterization of the per-

formance requirement.

Case 2b is significant departure from the previous three. It involves

maintenance of !tability in the presence of perturbations. The block

diagram for F '(P.A) is shown in Figure 1. There are many ways to state the

GAT for this case, depending on the desired notion of stability and assump-

tions on . The distinctions are somewhat subtle, but are important from a

theoretical poLat of view. Nevertheless, they do not signifcantly irnr %ct the

application of the theory.



The As are assumed to be LTIODEs, so that A C RH The assumptions

A C Cor A E CH... give the same result. The distributed case. A e H.. causes

some additional technical difficulties and is not the focus of these notes.

The following theorem treats internal stability

Theorem 2 FI'(PA) is internally stable for all A C BRH.

l

Note that input-output s ibility of Fg(PA) is not necessarily the same as

internal stability. In particular, the following statement is not true:

Not-A-Theorem ig 1<-for all IkI l: and Ae BRH.

Counterexample Suppose l!Pn, .>1 but P,,,O.

From now on stability will mean internal stability, but be denoted by

1 112 < - in the table, even though this is defnitely an abuse of notation.

Note that generically this distinction between internal and i-o stability does

not exdst.

As in Case 1. it is essential to allow weights on inputs, outputs and per-

turbations. As before, these weights may be absorbed into the nominal

model This allows, without the loss of generality, the use of signals and per-

turbations which are in unweighted unit balls. Thus implementation of the

analysis tools requires onil, a method for constructing interconnected sys-

tems and a method for evaluating the appropriate norm. The former applies

to all cases, whereas the latter requires a different norm in each case.
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Note that in Case 2 both uncertain inputs and uncertain plants can be

handled with the same analysis tool. This approach is particularly useful for

feedback problems where both types of uncertainty have significant impacts

on system performance- Case 2 has attracted a great deal of research

interest recently, and, is currently the popular new paradigm in the mul-

tivariable control community. Although Implicit in the methods of classical

control and some more modern work (e.g. Zames' conic sector theory circa

early 80's and Horowitz's 80's work), the approach did not gain wide atten-

tion until the late '70's.

The current interpretation is a consequence of research done in the late

'70's. (Doyle and Stein. Safonov etc). This interpretation involves singular

values as an analysis method and ringular value loop shaping as a sy-thesL.s

approach. The so-called LQG Loop Transfer Recovery (LQG/LT0 (Stein and

Doyle) combines the synthesis methods of Case 1 with the analysis methods

of Case 2 to produce a hybrid synthesis method. This gives an ad hoc

approach to Case., 2 that can be effective for many multivariable problems.

Another approach to synthesis for Case 2 is the so called H. or L-1 H.

methods introduced to the control community by Zames and Helton (with

additional contributions by Francis, Pearson. Glover etc.). The L- H.

methods for Case 2 are analogous to the L2/ H2 methods of Case 1 with the

exception that for Case 2 the L. rather than L2 norm is optimized. The solu-

tion to the general L./ H. problem will be presented in the Synthesis part of

thee no-t es.

The main objection to Case 2 is the res-ictive assumptions about uncer-

tainty (recall this was also the objection to Case 1). Although case 2 allows

both uncertain inputs and perturbations, anal sis can be performed for
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althar individually but not both together. Thus a system can be shown to

remain stable when perturbed and have acceptable response to uncertain

inputs when A = 0 but response when 6#0 Is not known. Only crude bounds

can be obtained with the methods of Case 2.

An additional limitation of Case 2b is that all plant uncertainty must be

modelled as a single norm-bounded perturbation. Typically, uncertainty is

present throughout a system. Suppose that a system is built from com-

ponents which are themselves uncertain and that component uncertainty is

modelled as norm-bounded perturbations. This situaton can 'h reer~nged

to At the general framewoik but the perturbation for the total system has

structure. The problem of structured uncertainty is taJ.en up in the next

chapter.

Ie



I.....



1.3.1 Introduction

This chapter considers the problem of stability with structured uncer-

tainty and of performance in the presence of structured uncertainty. Typi-

cally, uncertainty is present throughout a system. Suppose that a system is

built from components which are themselves uncertain and that component

uncertainty is modelled as norm-bounded perturbations. This situaton can

be rearranged to fit the general framework but the perturbation for the total

zystem has structure. This can be seen schematically in Figure L

Note that the interconnection model P can always be chosen so that A is

block diagonal and by absorbing any weights, 11,61I1<1. The results of Case

2b can be applied in two ways.

1) I ,l1 implies stability, but not conversely. This can be arbitrarily

conservative, in that stable systems can have arbitrarily large IP u II.
2) Test for each A individually. This can be arbitrarily optimistic because

it ignores interaction between the L.

The difference between the bounds obtained in 1) and 2) can be arbi-

trariy far apart. Only when they are close can conclusions be made about

the general case with structured uncertainty.

These two limitations of Case 2 (and 1) have motivated much of the

research duscribed in these notes. The result is a new paradigm described in

Case 3. The problem in Case 3 involves exactly that of structured uncer-

tainty.

Consider the system in Figure 2. Stability and performance analysis of

this system requires a new matrix function, the structured singular value

(SSV), denoted by . Before proceeding with Case 3. a digression to discussu
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wilbe taken. For details, see the reprints which accompany this writeup.
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1.3.2 SSYvfor Constant Matrices

The problem Is to test for det(I-MA)iO for sets of 4. Two standard

results are

1) det(I-Mf ) sO XY a e { '6 (A)< }

1ff U(M) ic1

2) det(I-MA)0o W~ A e{IV I X C, IXi<I}

1ff p(M):91 where P(M) = max r([

As a general iztion, consider a function /A with the properties that

MAuWII a (m) and

3) det(I-MA)sO IV A 0162

1ff /A(M) <1

Obviously, 1 is a function of M which depends on the strutwve of ( .

To be precise, a multi-index could be constructed which would specify trne

structure of I A ) and u would depend on that index. For this informal dis-

cussion, just keep in mind this fact and assume that a structure is specified.

Clearly V and p are special cases of A for particular structures as indicated

above. Furtbermore. tor any structure

P(M)- ) -- ) (4)

Given these bounds, how unportant is /4? The answer can be clearly seen

from the foLlowmng examples:



Suppose A = [0 9 and consider

1) =10 1 p(M)=o ()=,

dct(Z-AIA)=1 so AM=

det(I-MA) = I + - so s(M)=.
2

Thus neither p nor 1 provide useful bounds even in simple cases. The

only time they do provide reliable bounds is when pf. Thus better bounds

on A are needed to pursue the problem in Case 3.

For the rest of the discussion ix a structure for the A's as

=Idiag (A, 2. A 41). (5)

Then

This expression is little more than a definition of u since the optimization

problem implied by it is nonconvex. but it sho)ws that / exists as desired. To

obtain useful properties of x some additional definitions are needed. Let

.. ag(U .U. U.) U U,=,1  (7)

Q (diag(d3Z~d 2I.....dn ) d } (Z8)

where the sets V, and Q match the structure of Z. Note that the V and D

leave X invariant in the sense that



1) A Z U E1 imply a(U) = (U&) (A)

2) AcZ, Dc 2Imply DAD "' = a

From these two properties and the dednitixn above expr-ission for/;, one

immediately obtains

The irst important theorem aboutac is

Theorem I p(IU) =

This theorem expresses 1A in terms of familiar linear algebraic objects.

Unfortunately, the implied optimization problem is nonconvex so it does not

immediately yield a computational approach. The second important

theorem is

Theorem 2 If n:93 4(M)= ibf (D&W'1)

This theorem states that if there are 3 or fewer blocks ( no restriction

on size), then 1.t(M) is just U of a block diagonal similarity of M. Furthermore

(DMD- 1 ) is convex in D so that the inflmum can be found by search over

n-i real parameters.

The theorem is not true for na:4, but it is conjectured that
inf Zt(DMD- 1 ) still provides a reasonably tight bound for .& Also, many

D £0

problems of interest have 3 or fewer blocks so this provides a reasonable

computational scLeme.

plus scaling. Thus the general synthesis methods recently developed to

optimize the L. norm (i.e. i) may be applied, via scalings, to optimize A.

This will be discussed more Ln the syhthesis section. Now back to Case 3.



1.aa SVAnalyss of System

Abuse notation and deine

Although j14L is not a norm. this will be convenient. Recall tate Ij&,4
h a functicn of M which also depends on the assumed structure of the per-

turbations.

Case 3a involves stability in the presence of structured perturbations

e.a the result is analogous with Case 2b. In fact. 3a reduces to 2b in the case

that there is a single block in the perturbation. Suppose that A C BRH. and

tme A's have the structure A-d(A,A, 9 ," .... Ln). The GAT for Case 3a is

Theorem 1 Fu(PA) is internally stable for all sbuctured A C BRH.

I ip It 1

Case 3b puts everything together and is really the payoff for 1 analysis. The

lem is to check that ;:2 c1 is satis6ied for all u 1 !5 ;1 and all struc-

tured perturbations. Recall that from 2a and Zb that both stability with a

:ngle perturbation and performance with L 2 inputs involve the same test

S!L~g °,,although on different parms of the system. This means that the

~'tmin Figure 1 has internal stability and IlllS for all I~~2 1and
=d (ag 4,12, .A) E B.RH. if and only If the system in Figure 2 has

internal stability for all structured A and all L.., e BR.. This is exactly

uase 3a with the structure 6=iag(A,Ae. ,4,). Using this structure

for .s yields the following:
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F,,(P.4) is ixnternxally stable and jajt for Cl IkuI2zci and

This is a rame kably useful theorem.. It says that j :9 1 Implies not

jaly stability for all structured perturbations but also that 11 1: 1 for all

I i' 1 and all structured perturbations. Furthermore, I 1PI , > 1 implies

t~ thre eistsa u ith Pu:9 1 and a structured A such that either

flie 1or F,(P,A) is internally unstable. This is the Irst general result

which guarantees performance for a whole set of plants and gives an exact

(nonconservative) analysis test.
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1.4.1 A Glimpse at Synthesis

This will be a sketchy outline of the new synthesis results. The details

ore somewhat complicated and are treated in Part 2 which Is devoted to the

synthesis theory. At this point, we simply want to point out how the analysis

theory discussed in this part leads naturally to certain synthesis questions.

From the analysis results, we see that each case boils down to evaluating

I 1IqII 1W a2,- or u. (1)

for some transfer function 4. Thus when the controller is put back into the

problem, it involves just a simple linear fraction transformation as shown in

the diagram in Figure 1. (Note: the Pi's here are not the same as the P<i's

in the previous sections)

Each case then leads to the synthesis problem

min!I11P,(P.,K) fra .- r1

subject to internal stability of the nominal. Here

F(P.K)=Pl - P12K(-P2K)' P21.

The solution of this problem for a=2 and - is the focus of Part 2 on Syn1-

thesis Theory. The solution presented there uni6es the two approaches in a

cora-mon synthesis framework. The a = 2 case was already known and the

results are simply a new interpretation. The a=- case had been solved only

for special cases where P12 and P21 are 3quare. Also, the existing solutions

did not have computational schemes allowing their use on even moderately

sized problems. These tw( limitations, especially the former, restricted the

applic .ion of the pioneering H. methods to fairly simple problems, such as

sensitivity minimzation. The new solution eliminates these two limitations.
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Unfortunately, this new solution for the H2 and H. suffers from the

same limitations imposed by restrictive assumptions about uncertainty as do

the underlying analysis methods. While the SSV is a gnat improvement for

analysis (Case 3), synthesis for the a=Ak case is not yet fully solved. Recalling

that us may be obtained by scaling and applying IH- a reasonable approach

is to "solve"

by iteratively solving for K and D. With either K or D fted. the global

optimum in the other variable may be found using the A and H. solutions

described previously. Example designs have been done and this scheme

seems to work well. but global convergence is not guaranteed. In fact, a

countereample has been constructed where (3) reaches a local minimum

which is not global.
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2. 1. 1 Overview of Synthesis

From the previous part of these notes on analysis, we have seen that the

synthesis problem in each case reduces to dndlng a controller K which

achieves internal stability and solves

where

it:, Piz] ,)( , m

P = j 21 P2 2 . Pq C

and

Fj(P,K) = Pi + P12K(1-PMO'P21

We will restrict our attention for now to the a-2 and cases of (1).

Recall that the a=/u case of (1) can be converted to the a=- case by scaling.

The approach of these notes is to develop the a=2 and - cases in a parallel

manner, emphasizin their common features.

We begin by considering the special case of (1) where. all matrices are

constants. This is an interesting problem in its own right and manages to

capture the essential features of the general problem. While the a=2 case is

quite straightforward, the key step in the solution of (1) for a = - was 6rst

published in 1962 by Davis, Kahan. and Weinberger in their important paper

on norm-preserving dilations.

The remainder of this part of the notes involves taking each step of the

solution to (1) for the constant case and generalizing to the case of real-

rational matrices. The difculty arises from stability/causality considera-

tions which are not present in the constant matrix case.



Za1.2 Constant Matrix Cae

In this section. we will consider a special synthesis problem where all

matrices are constants. The constant matrix case will allow us to study the

synthesis problem in a simplified context. but one which parallels the

rational case.

For constant matrices, the norms reduce to

1IP II. = V(P)

11 P 16 =(r(P-P)
Note that these defnitions are not conventional but they are convenient in

allowing parallel development of the constant &nd rational cases.

Consider the constant matrix problem

mi, IF, )(PK) I = (1

where

[PII P121 e"++'+
P I P21 PIJ Pt ' ,

and

F, (PK) = P 1 - P1 2K(I-P22K)-'P2 1 .

Assume that P12 P12 > 0 and P2 1P2 1 > 0.

The frst step is to make the substitution of variables

K = (Z+Pu)' , ((FlK) 2) Q(P PFi)))

so

Q = (PI*P2)HK(Z-Pr22 Y1(P21P2 )3 (3)
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Using the linear fractional representation notation.

K = F (.r, Q) (4)

where

=r I :,r2 0 (?PlI1)~

J2 4~21 k 2 *) ) -(P21P2*1 ) 'PZ(Pj!P 12)_%
Yith this substitution. we have

F,(P,.) = F,(P,F(.T,Q))

= Pit , P 12(PI*P2 ) -IQ(P21P2*) ''P=

= T1 + T12QT21 (5)

where the Tif are deined in the obvious way. This parametrization has con-

verted the nonlinear problem in (1) to one affine in the parameter Q. Note

that T T12 = I and T21 Tj'= r. Thus we can flnd Tj and "jsuch that both

fTi T and ITj are square and unitary.

Since both a = 2 and norms are unitary invariant

IT11 +T12QT2  - T t -+ I Q 0 T

= [R. Q R-l I()

where

R1 = T.LTziT2 TjT*2 TI (7)
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Thus the problem in (1) reduces to

R21IIN R22111

and solution of (8) yields a solution of (1) by solving (2) for K.

The a = 2 case can be solved immediately from (8) since

11+Q R12111 _ 2+1.0 R1l 2 2(9I , Io = 'RQI i :
LR21  R221 11 IQtI iR 2 21

Thus

0 s = -t,2TI

and

f11+Q Ria]' J= f2 1 1] (10)

The simplicity of the a=2 case is responsible for much of its appeal.

Optimization in this norm reduces'to projection since L2 is a Hibert space.

This holds as well for the rational matriiproblem.

The a=- case is. somewhat more complicated since L. is not a HMbert

space and the minimization in (8) cannot be solved by projection. For-

tunately, L. arises as the space of linear operators on the Hlbert space L 2,

and (8) can be treated as a dilation problem. The next section focuses on

matrix dilation problems.
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Z1.3 Matrix Dilation Problems

Consider the optimization problem

where XB,C,A are constant matrices of compatible dimensions. This is a

restatement of (.7) for the a=- case. The matrix C A is a diation of its

submatrices as indicated in the following diagran.

c

CA d

-d c d c (2)

C*A] [A]

In this diagram. c stands for the operation of coampmssion and d stands

for diQtibn. Compression is always norm decreasuing; sometimes dilation

can be made to be norm preserving. Norm preserving dilations art the focus

of this section.

The simplest matrix dilation problem occurs when solving

m(i)

Although (3) is a much simpLifed version of (1), we will see that it contains all

the essential features of the problem. Letting 7 denote the minimum norm
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in (3), it is immediate that I JAI I- The following theorem characterizes all

xolutions to (3).

Theorem 1: For V 7 k

fY with II :91 such that

XS Y(9I -AA)H (5)

Proof:

iff

XX.+ A*A :s7 2 1

iff

X*X (1 -A *A)

iffif

X = Y(9ZI-A*)h for some ~Yj~s1

This theorem implies that. in general. (3) has more than one solution. This is

in contrast to the a = 2 case. The solution X : 0 is the central solution but

others are possible unless A"A = 721. A more restricted version of the

theorem is
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Corollary 1: For 7>7, 7 (8)-

The corresponding dual results are

Theorem 1' For 'V'7 k 7y

j[X AII-&7 iff BY.I~ (8)
such that

X = (--AA')Y (9)

CorrAlary 1' For 7>7o

II[xA 1 (10)

iff

l'(72-AA)-%X j.& 1 (11)

Now, returning to the problem in (1), let

7o ; min (12)x Al 1.

The foUowing theorem (Parrott) will play e. central role in the synthesis

theory. The proof is a straightforward application of Theorem 1 and 1'.
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Theorem 2

Proof: Denote by - the right band side of the equation (13). Clearly, 7.'

since compressions are norm decreasing. That 7 will be shown by using

Theorem 1 and 1'.

From Theorem 1 we have that B=Y(21-A*A)H for some Y such that

I 14:91. Similarly, Theorem 1' yields C=(9!-AA*)3Z for some Z with

Let X, YA *Z. Then

-YAZ Y(?Z-A-A*1' L= JI [ ;I-A*))Z A l
I -A

[(A/2.-.AU)% A J

Since

-A (-r--,) -A (9...AA3)iJ I 02OJ

Thus o 5'=7,.

This theorem gives one solution to (12) and an expression for 7. As in

(3), there may be more than one solution to (12), although Theorem 2 only

exhibits one. Theorem 3 considers the problem of parametrizing all solu-

tions. The solution k = -YA*Z is the "central" solution analogous to X = 0 in

(3). The next corollary is an alternative statement of Theorem 2 using the
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form of (Z 4) for the problem

7/. =minn BR + UQVII. (14)

where UU =fI and VV=ZI

Coro~lary 2

The following theorem (Davis, Kahan- and Weinberger) parametrizes all

solutions to (1). The proof is omitted. but is similar to Theorem 2 and

involves application of Theorem 1 and 1'.

Theorem 3 Suppose -I .. The solutions X such that

are exactly those of the form

=-YA*Z 7-YMWIZZi(17)

where W is an arbitrary contraction (iWH.1) and Y and Z solve the linear

equations

B Y(r 2Z-A 4)i

C =(91-4A*3Z. (8



The following corollary g&es an alternative version of Theorem 3.

Cordllary 3 -For7-/.>

I-lr-)-4(X+ rAz)(!-z)%I :: . (20)

where

Y B (9I-A*A) -)

Z =(72I-AA*)-C (21)

There are mwny alternative characterizations of solutions to (19),

although the formulas in (20) and (21) seem to be the simplest.

For the problem in (14), the following equivalences apply for aLl 7 > 7,

I UQV I -Y (22)
1ff

H[R"V+UQ RV fl:Z (23)
1ff

- DV U A (-4

1ff

I -IA )- ,, UQ]~ ~ (25)

(by CcroUary V)
1ff
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where R2 =(72-AA*)-3Rj

U2 = (921 -AA *U.

To complete this, simply factor U2 to extract a unitary factor, and apply tUe

dual of (22)-(28) to (28). Although the formulas get messy, (22) can be

solved in this manner.

In each of these cases, Theorem 2, Theorem 3, their corollaries, and the

solution described above, the general case reduces almost imediately to

application of Theorem 1 or Corollary 1. Thus. when it is convenient, we will

consider (4) rather than (18) and (28) rather than (22). This will simplify the

discussion of the rational case without introducing any loss of generality.



Z 1.4 Summary of Constant Prohiem

The rational matrix problem in equation (1.1) can be solved in a manner

which parallels the treatment of the constant case in the last two sections.

This generalization is the focus of the next three chmapters on synthesis. To

reinforce the similarity between the constant and rational case, we will now

review the key steps from the previous two sections and preview their gen-

eraizations to the rational case.

Consider the diagram in Figure 1. This summarizes the steps in the con-

stant matrix problem (21). The main steps are as follows:

1) Prametrization: Make the substitutiosaK=F (., Q) so that

F, (P,) F, F(PF,(.Q))

F, F( T.Q)

is aftine. Additionally, we want TI! T2= and T21 T2* =I-

2) Unitary Invariance: Find T.Land 'Tjso that [T12 T4 and [ TJ are square

and unitary.

Pte- an~d post-multiply by ITin T4I and [jto yield

S11+Q R 121 
2

' R21 R221

where



It R12

2 ~R2 21

Recall that without loss of generalty, we may assume the T17 O so

that (2) becomes

[ zJ" (4)

3) Projection / Dilation: At this point the =2 and a=- cases differ. For

a=, the problem reduces, by projection, to

Q

which has the unique solution Q=-RI1.

The a=- case must be treated using the matrix dilation theory of the

previous section. Recall that, in general. the solution is not unique.

From Theorem 3. 1. all solutions to

[ 11+Q'I for ye (6)

are of the form

Q =-R ( -(7)

for some 1 i' 1. Corollary 3.1 gave the alternative characterization

that

R 2,ony for >)

if and only if
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I(RIQ)(1-R2R1) -  1- !9 L(9)

-It is this latter characterization which will be used in the rational case.

Note that Q=-R 1 is one solution to (6) and (8).

4) Recovery of the opthmal K: This is obtained by simply computing K

from the formula K=F(.t,Q) used in step 1) to parametrize the prob-

lem.



2.1.4 Figure 1

min IlF14A 11, where Fl(P.K P11 + 1K -P2)'R

p arametrization

e~ flri . 12QT211 where TagT1 = I T21 721  r

Iunitary invariance

JR11-Q.R 21

proection ( I) dlto

Ip =4F, (J,Qs~)



2.1.5 Rational Matrix Generalization

The steps in the rational case closely parallel the constant case, as

shown in Figure 1. Most of the work in the remainin chapters is devoted to

generalizing these steps from constants to rational,. The source of all the

dilculty in the rational case comes from the requirement for internal stabil-

ity, or equivalently, causality. Without this the rational case would reduce to

the constant case at each frequency, and could be solved using the results of

the previous twn. sections.

We will now briefly outline the steps required to solve the rational case

and preview the upcoming chapters.

1) Parametrizaon: FInd J so that the substitution K F,(.J,Q) yields

z FI(T.Q)

= T11  T12QT21  (10)

with the additional requirement that T £ H. and

F(P.) internally stable (11)

if Q CH.

This parametrizes all stabilizing Is in terms of a stable Q C H. in addi-

tion to providing an afne parametrization of all stable FI(PK). This

parametrization (Youla) is developed in Chapter 2 on Stabilization.

A further requirement is that T12 and T21 be inner, that is T2 T1 =. and

T 2 *1 =!. Methods for obtaining the particular parametnzations which

achieve this are developed in Chapter 3 on Factorization.
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2) Unitary Invariance: Find TjL and T so that [712 Tj] and _J are

zqurt and inner (also Chapter 3). Then pre- and post-multiply by

jT12 T4 and 7- j to yield

11+Q R12 (
R 21  Ru] (12)

where

R 
T. J

Again, to simplify the presentation suppose that TI11 T1 O so that (12)

becomes

QZ 1 (13)

3) Projection / Dilaticn: At this point the a=2 and a=- cases again differ.

For a=2, the problem reduces, by projection, to

But since R1I ! L. , Q=-R1 1 would not correspond to a stable solution.

The unique solution is yet another projection

Q = Ps,(Ri) (15)

where Py, denotes projection onto H2. When viewed appropriately, these

two projections can be seen as a single projection onto a subspace of

The a=- case is again treated as a dilation problem. Since, generically
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21°

it is convenient to use the characterization in Corollary 3.1 and (8)49).

Recall that

I[R IIn+ ,

R 1  -/~ for 7~(7
'i2f

The key to proceeding in the rational case is to find / C RH. such that

M- 1 C RH. and !M(*9-RR 2 ,). If we use the symbol (&I-RR2 1 )

to denote this M, then (18) makes sense in the rational case. Finding Ml

involves spectral factorization and is treated in Chapter 3.

Given M C RH. with the desired properties, (18) reduces to

.9 1 (19)

where G=RIM-1 C RH. and =QM-". Solving (19) for C RH. solves

(18) for Q RH.. Note that Q=&M is in RH. if is, sinceM C RH. by

construction.

The final step in the rational case then involves solving (19) for C RH-.

This is a standard mathematical problem of approximating an L. matrix

by an H. matrix. This turns out to be yet another dilation problem but

in a somewhat different guise than those treated in the constant case.

The solution of (19) is the focus of Chapter 4 on Best Approximation.

4) Recovery of the optimal K: Just as in the constant case Kp =F (J, Qpt).

This K., will stabilize F(P,I4s) since the parametnzation in Step L)

insured that Q stable lead to internal stablility of



Fj(P=Fj(,Fj~,Q)4
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2.1.5 Figure 1

Iparametrization
K=FG.Q

.jX. 11-1 7'12QT21fla where T1*2T 2 1 T21 2* =

I unitary invariance

ru I- Q R21 1

a=2 (~
projection d illation

QVOj

K.t F, Q)
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2.2.2 Internal Stability

In this section P and K are fxed proper transfer matrices. Te block

diagram of Fgure I represents the two equations

Partition P accordingly:

p 11 P1] (2)

It is convenient to introduce two fctitious external signas, wi and w2, as in

Figure I.

Suppose the signals v,w 1, and W2 are specifed and that u in Figure la Is

well-dedned. Then so are a and y. Thus It makes sense to dedne the system

in Figure la to be =aUl-posgd provided the transfer matrix from to U

exists and it proper.

Lernma 1. The system is well-posed if and only if

I - K(-)Pz2(-) is invertible. (3)

Proof. Figure la implies the equations

is = W 1Ky * KW2

Y = P21v * P2U

and these in turn imply that

(I-K')U = W+ fP 21V -+ Kug.

Thus well-posedness L equivalent to the condition that (ZK)-t exists and is

proper.
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QED

It is straightforward to show that (3) is equivalent to either of the follow-

ing two conditions:

-P=(40) W s invertible (4)

I - Pnu()K(-) is invertible. (5)

The well-posedness condition is simple to state in terms of state-space

realizations. Introduce minimal realizations of P and K

A B, 2
P = C1 D1 D1 (2)

C2 D21 Dz

K -- P . (

Note that the partition In (6) corresponds to that in (2), Le.,

[ A (a)

Then P22(-)=D=, and K()=D, so for example, from (4) well-posedness is

equivalent to the condition that

[.Dis invertible. (9)

Welloposedness will be assumed for the rest of this section. Let z and 2

denote the state vectors for P and K respectively, and write the system

= A * B2U (lOa)

C - D2U, (lOb)
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It + ff (10c)

The system of FiPure 1 Is inta~rnL stabL provided the origin (z,l) (0.0)

is asymptotically stable. To get a concrete characterization of internal sta-

bility, solve equations (10b) end (10d) for u and y:

= -2 I l[, jC ]
(Note that the inverse exists from (9)). Now substitute this inte (10a) and

(10oc) to get

where

-ol + J 2 11,r 11 1

Thus internal stability is equivalent to the condition that A has all its eigen-

values in the open left hal-plane.

It is routine to verify that the above definition of internal stability

depends only on P and K, not specific realizations of them. The following

result is standard.

Lemma 2. Consider a minimal realization of P as in (6). There exists a

proper K achieving internal stability iff (AB 2 ) is stabilizable and (C 21A) is

detectable.

The latter stabilizability and detectability conditions are =sum'd

throughout the remainder of this chapter. Since



4

equations (10) constitute a state-space representation of the system in Fig-

ure 2. Although the realization in (11) is not necessarily minimal it is stabil-

izable and detectable, and these are enough to yield the following result.

Lemma 3. The system in Figure 1 is internally stable iff the one in Figure 2

is.

The next section contains a parametrization of all Is which achieve

internal stability for the system in Figure 2. To simplify notation. dedne

G:= P2 2 - B:=B2- C:= C&, D:=D2 2 .

Then (A,B) is stabilizable, (CA) is detectable, and the system under study is

that in Figure 3.

The above notion of internal stability is dedned in terms of state-space

realizations of G and K. It is important and useful to characterize internal

stability from an input/output point of view. For this, consider the Zeedback

system in Figure 4. This system is described by:

[!G = . (10)

Now it is intuitively clear tha; if the system in Figure 4 is internally stable

then for all bounded inputs (v 1 ,v2 ). the outputs (a,,") are also bounded. The

foLlowing l-znma shows that this idea lends to an input/output characteriza-

Lemma 4. The system in figure 4 is internlly stable if and only if (-GK)

is invertible and the transfer matrix
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Ij I l 4r, 4K(I-GK.0-'G KV iaGcmll
[-o -I - L(I-GK"G (I-aK)-'

between (Vl,v 2 ) and (a'2) belongs to RH..

Proof. As above let (A,B,C.D) and , be stabilizable and detect-

able realizations of G and K respectively. Then the st" Le-Space equations for

the system in Migure 4 are:

The last two equations can be rewritten as

fj'- l o olI,1. Eu,.

Now suppose that this system is internally stable. Then (7) implies that

(;-1D) (IaK)(a) is invertible. Hence (I-K) is inveitible. Further,

sinca the eigerivalues of

are in the open left halU plane, it follows that the transfer m~atrix in (10) from

(VI )tO (0 1, a2) S in RH..

Conversely, supppose that (I-K) is invertible and the trr:sfer matrix

Lf (10) is in ;Ul. Then. in pariicuiar, k UA 'S Pz-QPC1 WP;Qh ixxPUC3 T.12CL

(I-DD) is invertible. Therefare

I1
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is nonsingular. Now routine transfer function calculations give,

1= * B 21J

Since the transfer matrix from (vl,v2 ) to (s .a2) belongs to RH.. it follows

that

belongs to RH. Fmally, since (AB.C) and (;. ,) are stabilizable and

detectable, it follows that the eigenvalues oA A are in the open left half plane.

We note that to check internal stability it is necessary ( nd sufficient) to

check that each of the four transfer matrices in (11) are in RH.. It is not

difficult to construct examples of G and K such that any threa of the four

transfer matrices in( 1) ar in RH. while the fourth one is unstable.
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2.3 Paametrizaton of All Stabilizing Controllers

Two matrices NM E RH. with the same number. of columns are

i-ight -eoyrima if the combined matrix has a'left inverse in RH.. 'hat is,

there exists X,YERH.. such that XM + ? =Z. This is often called a

Bezout or Diophantine equation. An alternative definition is that two

matrices in RH. are right-copre if every commnon right divisor in RH. Ls

invertible in RH.. This can be shown to be equivalent to the above defnition

in terms of a left inverse, but we will not use this fact.

It is a fact that every G C R, (proper, real-rational) has a right-coprime

factorization G = NM"1 where NM C RH. are right coprime. Similarly,

there exist left coprime factorizations (icf), defined in the obvious way by

duality. The proof of the existence of such coprime factorizations will be

given in the next section with explicit realizations for the factorizations. In

this section. we will see how these factorizations can be used to obtain a

parametrization of all stabilizing controllers.

Begin with rf's and lcfs of G and Kin Fgure 4:

G NU - = AV-F (i)

K UV" = V1(2)

Lemma 1. Consider the system in Figure 4. The following conditions are

equivalent:

L The feedback system is internally stable.

fu nb

2. [ y is invertible in RE-..

3. M I is invertible in RH..
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Proof: As we saw in Lemma 2.3 of the last section. internal stability is

equivalent to the condition that

or, equivalently,

[G RH.. (3)

Now

[ _ 1 -L o'1
0~

so that

Since the matrices

are right-coprime, (3) holds 1a

This proves the equivalence of conditions 1 and 2. The equivalence of 1 and 3

is prov-ad simiaraly.

QED
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We shall see in the next section how to ftnd explicit realizations for

N, M. N,, U,, V., U., , and.uc that (1) holds and

Z [NV. 01(5-N~ it" iou* =(15)

The above lemma says that

then qualifes a particular controller achieving internal stability. All stabiliz-

ing controllers can be expressed in terms of X and a parameter Q, as shown

in the following:

Tneorem 1. The set of all proper controllers achieving internal stability is

parametrized by the formula

K K. + V;1 Q(Z+V*1 NQ)1 'Vg1  (

where Q ranges over RH. such that (r + V;'NQ)(-) is invertible.

Proof: Assume K has the form indicated.

Define

U U, . MQ, V V, + NQ

U * Qq, V VO + QI;

then

-NNVONQJ

-[o jIq .j ]-IN V[o 1J0
-, !i from (5)

= 1; 1j11ozJ
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- [~ ~](7)

Thus K achieves internal stability by lemma 1.

Conversely, suppose K is proper and It achieves internal stability. Intro-

duce rcf and lof of K as in (2).

Then by lemima 1, Z 1 9 V- U is invertible in RH. Dedne Q by the

equation

U + !IQ = UZ-1, (8)

so

Q = S- 1(Uz- 1 - U.) (9)

Then

V, + NQ = V + N-(UZ'- U,)

= v "t(Uz - U.) fm (1)

= M-(Mv, - NU, N iUZ'1)

= v'1(f + iuz-') from (5)

= M'*'(Z + u). Z

=M

= VZ'* (10)

Thus,

K= U11-

= (Uo Q)(V*+NQ)-'
-Tr It / It rt ir-l An\ Al r XY %- T,-I T -. f14\

ro Ip \In VC Ioi .e I s

from (prelim?). Thenm since

(M - LU , V) = (Al - -V;' U- ') O - V. N) =;
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we have that

•K = -. + Q + 71O n-.(12)
To see that Q belongs to RH., observe first from (9) and (10) that MQ

and NQ both do. Right-coprimeness of N and M then implies that Q C RH.

Finally. since V and Z evaluated at s=- are both invertible, so is

Va + NQ, from (10), hence so is I V -INQ.

QED

Defne the rational matrix

a (13)

and consider a controller K given by formula (3). Then the controller equa-

tion

S- f +. v;Q( + .11

is equivalent to the triple of equaticns

U = Y. ;Y

U1= V;Y -'j

The block diagram corresponding tc this triple is in Figure 5. We con-

clude that every stabilizing controller can be represented as K = F(JTQ), as

in Figure 5, for some parameter Q, which is constrained only to be stable and

proper and to make K proper.

The next section gives an explicit state-space realization of one choice of

the interconnection matrix or.
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Z.4 Realization of J:

Recall from Section 2 that we have

where (A,B) is stabilizable end (C,A) is detectable. To obtain a right-

coprime factorization of G, choose a matrix F such that A+BF is stable.

lamna 1. A stabilizing state feedback F yields rcf G : NM- 1 where

IC4DFIBJ(1

Proof: That 0 = NM- follows from:

fA BFIB
= 0 AfBF (cascade of two systems)

CDF DJ

k+BF BF B1
0 A 10 (by change of basis in the state-space)

1C+DF DFIDj

03,'DID (deletion of uncontrollable part)

-N.

That N and M are right-coprime will follow from (3) below.
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I IIJD

is aso a realization of an rcf of G.

By duality, to get a left-coprime factorization of G, take H such that

A+HC is :table.

Lemma 1'. A stabilizing output injection H yields Lcf G=MVIl where

[J +HCI B*H1 (2)

The next step is to specify U, V, UO, V, to satisfy

The idea behind the choice of these matrices is as follows. Using

observer theory, find a controller K. achieving internal stability. Perform

factorizations

14 = U. - V ;, D

analogous to the ones just performed on G. Then Lemma 3.1 implies that the

left-hand side of (3) must be invertible in RH. We shall see that, in fact, (3)

is satisfied.

The equations for A4 are

h =A +t + is(, - D.-y)

that is,
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+ B + HC HDFI (4):-F 0

Define

!:=A + BF + HC + HDF ,A:=-H

:-C +DF , :z -(B + HD).

Following (1) and (), define

us JC+DF I(5)

1.IDI FI 0

Using the above definitions we have that

V. F 1 7' I . (8)
IC+DFID I

F= T1F ( 01. (28c)
Ic I -D Ij

and the following theorem hdlds.

Theorem 2.

Equation (3) is satisfied.

Proof: Verification of (3) is immediate using (7), (8). and the inversion for-

mula for systems (prelim).

A realization of J is now immediate. Substitution of (1), (4). (5).

and (8) into (3.13) leads after simplification to
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A+BF+PJC+HDFI-H B+HD
.TF - C I .()

-(C+DF) I -D

Let's recap. We began with the (stabilizable and detectable) realization

G=D]

We chose F and H so that A+BF and A+HC were stable. Donne J by (9).

Then the proper K's achieving internal stability are precisely those

representable as in Figure 5, where Q C RH. and

I + DQ(-) is invertible

(The last condition is equivalent to the one

(I. - 1, INQ)(-) is invertible

which is required as per Theorem 1).

This representation result has an interesting interpretation : every

internal stabilization amounts to adding stable dynamics to the plant and

then stabilizing the extended plant by means of an observer. The precise

statement is as follows; for simplicity of the formulas, only the case of

strictly proper G and K is treated.

Theorem a

Assume G and K are strictly proper and the system in Fgure 3 is inter-

nally stable. Then G can be embedded in a system

where
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and A, is stable, such that K has the form

+4 B .. F'. + Hi. " IH.1S ,F, HC T,

where A. + BF. and A + H,C are stable.

Proof. K is representable as in Fgure 5 for some Q in RH-.. For K to be

strictly proper, so must Q be (see (3.6)). Take a minimal realization of Q:

Since Q e RH. A, is stable. Let z end x, denote state vectors for J and Q

respectively, and write the equations for the system in Figure 5:

= (A + BF s' HC)-B + By 1

%.1 = -C - V

is = Ae1,s + B~u

Y, = Czs

These equations yield

,= . - B,F. + HeC.)z. - H.

Us F.:.
where

n A, B . .. ae a

QED



-2.5 Closed-Loop Transfer Matrix

Theorem 1 provides a parametrization, in te ms of Q, of all proper Cs

which achieve internal stability in Figure 1. The goal in thij section iz to

express the transfer matrix from v to e in terms of Q.

A stabilzing K is representable as in Figure . ubstitution of Ta block

diagram in Fligure 5 into that in Figure 1 leads to the one in -igure B. limi-

nation of the signels us and y leads to Flgm-e 7 for a scttable tmnsfer matrix

T. Thus all closed-loop transfer matrices a." representabie n in 1fure 7. 1,

remains to give a realUzation of T.

We must frst put back the original notttiob wbhich, was sinvimed at ths

end of Section 2. Let

Al B, B2
1

p = - (1)

LC21iD21 Aui

be a minimal re lizttion of P., and choose F AndI H so that A+R 2F and

A+HC2 are ctabic

Lemma 4.

- A+AIC2 B 1 +11D2 t 0 (~
IC - DF -D 12F' nil D12 1

1 0 Q 21 1
Proof. Wtrh the oziginal notation we have from (..4.9) that

IA+BPF+HCe+HD22FI-f B2+HD]
j=F 0 (3)

-(C 2 -"D22 F) I -D=

Partition J and T accordingiy.
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1A +BF B321 (5b)= j

zT 0.

n Fi-ure 7 the govvrnizg qu=atiL are therefore

1 v + T 221u

(7T11 +
,o iLbst

In sunurny, we haw.

Thmemr S. The set of tll closed-loop transfer matrices from v to e ex.biewv

able by a nlnteeoraly stabiling proper ccmtroller is equal to

12'1 + 7TxgqTm : Q c RE¢. 4' - DV=Q(-) inveetiblel.

The importawt point3 to note are that the closed-loop transfer matrix is

simply an afine function of the controller parameter r.Atrix Q and that the

coeffient matrices T have very sirple reeizations. namely, as in (5).
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= I FA+BIF B2] (5b)

T21= +ufc2 Bi +,HD, 1  (5c)

T2 = 0.

In Figure 7 the governing equations are therefore

= T11t + Til

I = 21

so that

i = (Ti 1 + QT21 .

In summary, we have

Theorem 3. The set of all cloed-loop transfer matrices from u to e achiev-

able by an.internally stabilizing proper controller is equal to

{T,, + T12QTS : Q C RI-i. I + "Q(-) invertlble}.

The important points to note are that the closed-loop transfer matrix is

simply an afne function of the controller parameter matrix Q and that the

coefficient matrices Tq have very simple realizations, namely, as in (5).
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Z3.2 R ccati Fuaions and Factorizations

Consider the Algebraic Riccati Equation.

. 'X + ;X - XX + Q= 0 (ARE)
where

E,W,Q e De" , W W' :0 and Q=Q'

with the associatrd Hamiltonian matrix

AN= [EQ :- (Hiamiltonian)

The following theorem and corollary characterizes the relationship

between spectral factorization. Riccati equations, and decomposition of Ham-

Utonians.

Theorem 1 Let A,B.P,S,R be matrices of compatible dimensions such that

P=P', R=R'>O, with (A.B) stabilizable and (P.A) detectable. Then the fol-

lowing statements are equivalent.

a) The parahermitian rational matrix

r~)= [se1I[Ay.' I ~Ik I
satisfies

r(ju) >0 for all 0" w : -

b) For E=A-BR-IS', W=BRIB' and Q=P-SR-IS' . there exists a unique

real X:X' such that
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E'X -XE-X ', Q = 0

and E-BR'IB'X is stable.

c) The Hamuinian matrix

I A-BR-I$ '  -BR-B' 1
A = _P+SR-S, -(A-BR'S'j

has no j w-axis eigenvalues.

Corollary 1 If the conditions in Thec.',. 1 are satisfied then EM C Rp

such that M" E RHi.. and

r = Ar*RY

A particular realization of one such M is

where F= -R 1 I(S' * B'X).

Proof: (a)-(c) Let

r(s) = (2)' B' IR

Then Ag = A _ Suppose AN has an eigenvalue on.the j,,,-axis. Then

3W., ZO :(z'.')' such that

or

- :-R'(S' B'z2) (4)

(j~o I A')z 2 : -(P-SR-S'): 1 SR'IB'z (5)
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Suppose

0 = Cz. = S' 1 + B: (8)

then from (4) and (5)

(jw,I - A): 1 = 0 (7)

(jol + A'): 2 = -.Px (8)

Since (7) implies =&w.I+A')=O, from (8) we have z:Pxl=O. This implies,

along with (7) that (P,A) is not detectable. Hence ez, #0. Now Lemma

0.2.3.8 implies that there exists %4 00 such thAt I(jw)u, =0. This contradlcts

the hypothesis that IV w)>0. Hence (a) -+ (c).

(b) -* (a) Suppose SX=r such that E-BR'1BX = A-BRI(S".B'X) is

stable. Let F=-R-I(S' + B'X) and

It is easily verified by use of tle Riccati equation for X and routine algebra

that r = ".MRU so

Now

M-I-

So M-1 C RH. Thus r-1 c RL. and for all 0w-

Hence P'jw) > .0 and (b) - (a).

(c) -+ (b) -This is proven as part of Theorem 3.1 in the next section.
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The next section focuses on the -ioltiin of the Riccati equation and com-

pletes the proof of Theorem 1.



.3.3 Solution of the Algebraic RIccati Equation:

Consider once again the Algebraic Riccati Equation.

EF'X+X2 - XWX+ Q (ARE)
where

E.W,Q f, ': W 2-O and Q=QT

with the associated Hamiltonian matrix

S _-Er  (Hamiltonian)

Our main interest is to flnd the unique real symmetric stabilizing solution

such that the matrix (E" WX) is asymptotically stable. For simplicity vs

will use "solution" of the ARE to mean a real symmetric one. The ARE con-

sidered here is more general than the ARE which arises in linear quadratic

optimal control and Kalman-Bucy lteri rg theory in that there is no assump-

tion on the definiteness of the matrix Q.

An important property of the Hamiltonian matrix AH is that the distribu-

tion of its eigenvalues (denoted as A(AH)) is symmetric with respect to both

the real and imaginary axes, i.e., if X le A(Au) with multiplicity k, so is

X, -X, and -k Therefore, A can be partitioned as A, and A2 so that

X £ A, with multiplicity k implies that X C A1 and -X ,-4 C A2 all with

the same multiplicity.

One connection between the ARE and AN caLn be seen by assuming that X

is a solution to ARE and conjugating Ai by [-X to yield
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E-WX -, 1
=-(ET X X -XWX+Q) -(E-WX)
X -wx -W ]11
= 0 -(E-WX) "

This puts AV in block upper triangular form and clearly exhbit-; a particular

partitioning of the ekqenvalues of Al with respect to the imaginary axis. For

example, if E-WX has all its eigertvalues in C-, then -(E-MX) T has all its

poles in C+. Thus, the solution of iJU which stabilizes 37- X y' ld a decom-

position of AR into stable and unstable parts.*

This section will explore the condiuons under which the desired solution

of ARE exists. There is a considerable literature addressing the theory of

ARE and it is not the purpose of this report to give a detailed treatment of

this subject. We will simply present and prove the results which are relevant

to the factorization theorems in this report.

Now, we are going to state the main theorem of this section which gives

the necessary and sufficient conditions for the existence of a unique stabiliz-

ing solution of (ARE). Without loss of generality. we will assume that

Pv =GG

Theorem 1:

The stabilizability of (E,G) and Re[%X(AR)] 0 0 ( = ,Z ...... 2n) is

necessary as well as sufficient for the existence of a unique stabilizing solu-

tion of (ARE).
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Remark:

The unique stabilizing solution of Theorem 1 will be denoted by Ric (AR).

Note that this theorem is more general than Theorem 2.1 from the previous

section since no detectability assumptions are made. The following theorem

will play an important role in the next section in obtainin complementary

inner factors.

Theorem 2:

If Q = HT H 2 0 in (AM and X is its solution. then Ker(X) C Ker(H).

The remainder of this section iL devoted to proofs of Theorems 1 and 2.

Iemma 1: (Potter. Marte.reon)

Let the columns "of the matrix [ IR271* (Y,Z c r"m") be the

eigenvectors or generalized eigenvectors of A11 corresponding to the eigen-

values X1, X2 ...... . X. Then

(i) the matrix YFZ is symmetric.

(ii) if Y' exists, then X = ZY-1 is the solution of (ARE) such that the

matrix (E - WX) has the eigenvalues X1, 4 ....... X.

[Proof)]:

The proof was drst given by Potter (1966) and generalized by Martensson

(1971).

Lemma, 2 :
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There exists at most one stabilizing solution to (ARM.

[Proof]:

Let X, and Xg both be-the stabilizing solutions to (ARE),

ETXI " XIE - XWX 1 + Quo (1)

ETX, xE -XWX. Q =Q o (2)

subtz-ating (2) from (1) yields

Er(X. - XI) + (XI - Xg)E - X iX + X2WX2 = 0

which may be rewritten as

(E - wx)(X, - X,) + (X, - x,)(E - Ifx = 0 (3)

Since both X, and X2 are stabilizing solutions, we have

e[tE- WX1)J < 0 V'~ 1, 2...n

and

Re[Xj(E - WX)) < 0 V .Z ...... n

From Property 1, we conclude that (3) has a unique solution

(XI-X,). 0. or X, = X 2 .

Q.E.D.

Now, we are going to state the main theorem of this section which gives

the necessary and sufficient conditions for the existence of a unique stabiliz-

in& solution of (ARE). Without loss of generality, we will assume that

F= r .

Theorem 1

The stabilizability of (E,G) and ReE\,(AR)] s 0 ( i = 1. ....... 2n) is

necessary as well as sufficient for the existence of a unique stabilizing solu-



tion of (A ).

[Proowf] :

Suppos6 (E,G) is stabilizable and e[o(A,)] $ 0 !or a.ll i. Let the

col mans of the matrix y (Y1.Y2  W ) be the eigenvectors or general-

ized eigenvectors corresponding to n eigenvalues with ntsgative real parts

and r be the corresponding (real) Jordan blocki. Le..

=
,z- I y2 I= IY:

or

EY1 - GGFYZ Y1Jr (4)

-QY-EFY2 = YJ (5)

We will frst prove that the matrix Y1 is nonsingular. Suppose Y, is singular

andP Y1 ) denotes the null space of YI. Then V v e Ker(Y), we have

Ylv = 0 and

VTY2j X (4) XV:

,0 - ry2rEY"v - FYrGGFY2v = V'YJY 1 1ry
Since yjT Y2 is symmetric (from Lemma 2-1),

2 ryryJV = -, Y r = (YIV)rY 2JV = 0

-2 GrY 2v 0 (8)

(4) x V,:

so EYvI - =Y~ Y1Jv

JvCKer(Y1 )



It is clear that Yer( Y) is invariant under J and is spanned by solfie sub-

set of the (generalized) eigenvectors of r. Therefore, S eigen-pair (,) ot .

subc hat J; and C Ner(YI). Then

(5) xi+:

=0 -r:y = ; 2

n ET(Y 2;) = (-I)(Y2,) (7)

- (-) is an eigenvalue of Er(or E)

Furthermore, we know that Re(4) > 0, By the assumption of stabifza-

bility, we conclude that (4) must be controllable. Thus. from

Theorem 0.2.1.i(iii) (MBH rank tests), the matrix -4! - E I G ] must have

full rank n.

But, from (8) and (7), we hive

( )-4J -E I G ]0

This is a contradiction, and therefore, Yj must be nonsingular and ,from

Lemma 2-1, we know X = Y2Y 1'1 is the stabilizing solution. Applying Lemma

2-2, the uniqueness of stabilizing solution s guaranteed.

( Necessty ):

If X is a unique stabilizing solution. then (E - GGrX) is asymptotically

stable. This implies that (E.G) must be stabilizable. Decause of the sym-

metry of A(AH) along the imagiry axis. we conclude that Re [Xj(Ag)] ;* 0 for

i L .......2n.

Q.E.D.
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Corollary 1

If Q at 0, then the stabilizing solution X k 0.

[Proof] :

ErX + XE - XYIX Q =0

(E - WX) TX + X(E - WX) x -(XI)X + Q)
(E - WX) is asympotically stable since X is the stablizing solution. Thus,

-the solution of the above Lyapunov equation can be written as

X X f r(z'rX)r:(XffX + Q) e (z -nr-t d

Since the matrix (XWX + Q) k 0, XA 0 is concluded.

Q.E.D.
Remark:

The proof of Theorem 1 was first given by Kucera in 1972 with the

assumption Q a: 0. In fact, this assumption is not necessary.

Theorem 2:

If Q = RH a 0 in (ARM and X is lts solution, then Ker(X) C Ker(H).

[Proof]:

Since X is a solution of (AM, we have

£EX + XE - XWX + HrT = ()

AW k . Ml~ Aj k^&;, - W.5. I&J.l~4

U x () x U:

MAP -u2ATXu - uTXAu - uTXWXu UTHrHu = 0



- U?H TA,; 0

no IL C r(H)

Hence, we conclude that Kezr(X) C Ner(H).

Q.E.D.



2.3.4 Inner-Outer and Spectral Factortzation:

In this section. the special form of coprima factorizations required to

reduce the general H, optimal control problem to a best approximation

problem will be developed. In particular, explicit realizations are given for

coprine factorizations G = N "1 wih inner numerator N (Theorem 1) and

inner denominator M (Theorem 3); and for the complementary inner factor

Nj.which completes the inner numerator to make [' 4i] square and inner

(Theorem 2). The theorems will be stated for right coprime factorizations

(rcf) with the duals for Lf's following just as for the general case of

coprime factorization developed earlier.

For the following theorems, it is assumed that G = I Re" and

the realization is minimal We will denote by R0 (Rk0) the symmetric

matrix such that fRff- = R and use "D2 for any orthogonal complement of

D so that [DR-M DlJ (with R=D'D) is square and orthogonal.

Recall from Corollary 0.3.3.1 that N = is inner if and only if

i) k'X + t' = 0 (i)

ii) P-D= 1 (2)

where the observability gramian X solves

2 + A+ =0 (3)

From Lemma 2.4.1 a stabilizing state feedback F yields rcf G=NM-'

where
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+DF DZ"(4

and Z can be any nonsingular matri. To obtain a rcf with N inner, we sim-

ply need to use equations (1)-(4) to solve for F and Z. This yields the follow-

ing theorem:

Theorem 1:

Assume p a: m. Then. there exiss a f = NM- with N inner if and

only if GG > 0 on the I-axs, including at -. This factorization is unique up

to a constant unitary multiple.

A particular realization for the factorization is

[ R'KI c RHiP)xU (5)
1C+DFIDR- j

where

R =D'D > 0

F = -R-('X-D'C) (6)
and

k-BR-1D.C -2R- 1 3'1
X .C _C-DLC -(A-BR-D'C)J 0 (7)

[Proof]:

(only if):

Suppose G = NM- is a ?cf and N'N=I. Then

G*G = (NM- 1)(NM "1) = (M"P)M- > 0 on the jr-axis since M E RH.

(if):
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The if part will be proven by showing that (1)-(4) lead directly to the

above reaization of the rof of G with inner numerator. That G = NM-1 is an

raf follows immediately from (4) once It is established that F is a stabilizing

state feedback. Using the notation

I LC+DFIDZI (8)

we will use (1)-(3) to get N inner and A+BF stable. From (2) we have that

Z-R-iU where R=D'D>O and U is any orthogonal matrix. Take U=. Equa-

tion (1) implies that

?-*B'X + R-iD'(C+DF) =0

so solving for F yields

F = -.- (B'X D'C) (9)

Then equation (3) yields

0 = x - A --e

= (A+BF)'X + X(A+BF) + (C+DF)'(C+DF)

= (A-BR'D'C-BR'B'X)'X - X(A-BR-lDC-BR'SB,X)

+ (C-DR-IB'X-DR-D'C)'(C-DR-'B'X-DR-ID'C)

= (A-BR'ID'C)'X + X(A-BR-ID'C) - XBR'B'X + C'D.LDjC (10)

since DjD! = I-DR-ID'. Thus X=Ric [AH], where
-BR-ID'C -BR-1B' 1=H -c'Djic -(A-BR-D C)']

?.,m. Y=Ri IA..) ,.rset ,lirh that A4R" ic, stahl fonlnw frnm Th.orem

2.1 as follows. Let

= GG
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,C DDj[ I(1)

That r = GG > 0 is true by assumption. To satisfy Theorem 2.1 we must

have (A, B) stabilizable and (P , A) detectable, but this is immediate since

the realization for G was assumed minimal Thus, Theorem 2.1 ensures that

X = Ric (A.) exists such that A+BF is stable.

The uniqueness of the factorization follows from coprimeness and N

inner. Suppose that G = NIN "' = N2Mj" are two right coprime factoriza-

tions and that both ntmerators are inner. By coprimenesi, these two factor-

izationsare unique up to a right multiple which is a unit in RH! 1. That is.

there exists a unit 9 C RHi?-", such that [~ :.Clearly, 9 is inner

since ("9 = GONN 1' = N'N 2 = I. The only inner units in RH. are constant

matrices, and thus the desired uniqueness property is established. Note that

the nonuniqueness is contained entirely in the choice of a particular square

root of R.

Q.E.D.

In a similar manner equations (1)-(3) can be used to obtain the comple-

mentary inner facLur (CIn in the following theorem.

Theorem 2:

If p > mn in Theorem 1, then there exists a CIF Nj E RH.PxP( - ) such

that the matrix [N N is square and inner. A particular realization is

N A+BF -XtCD h
NV-L= [C+DF D1. I where X anid F are from Theorem 1 and xr is the
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pseudo-inverse of X.

[Proof]:

The proof consists of verifying directly that N] is inner usng the

above realization for Njand the realization for N from Theorem 1. Using the

notation

[NNi+BFIB.R' -- C'D (13),Cl : DR -) + i- D.
and the fact that Ker(X) C Mer(DI:C) (Theorem 3.2), equations (1)-(3) follow

immediately. Thus [ Nj] is inner.

Theorem 3:

There exists a r f G = N °AC such thatM rr RH" K is inner if and only

if G has no poles on the j r,-axis. A particular realization is

[ +BFIB!
1 F 11 RH.(")x (14)

where

F = -B'X (15)
and

X = Ri c i (18)

[Proof)]:

The proof is essentially the same as for Theorem 1. The details are

straightforward and are omitted.
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Remarks:

(1) The minimality condition in Theorem 3 can be weakened to (A,B)

stabilizable and A has no eigenvalues on the jr-zis and the

theorem still holds.

(2) If G C Rj ' in Theorem 1. then AMis a unit in P.H. and A- is

"outer". In this case, G = N(Y -1 ) is called "inner-outer factoriza-

tion" (10F)."

(3) Dual results for all factorizations can be obtained when p :9.. In

these factorizations, output injection using the dual Riccati solution

replaces state feedback to obtain corresponding left factorizations.

In the follawing theorem, we may assume that G(s) is stable without loss

of generality. Any G C RL.. may be factored using the dual of Theorem 3 to

obtain a stable numerator N such that NON = GG.

Theorem 4: (Spectral FactorLzat4on)

Assume G(s) C RHJx and 7 > iIG(s)II. Then, there eists a

M C RH. mx . with stable inverse such that M-M = -, G*G with

where

R = 72! - D'D > 0

K= -R!kA, - D1 L.

A+BR-ID'C -BR-B
X I C [(I+DR-ID,)C _(A+BR-ID C)J
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[Proof]:

Lot

7219 - G*G = I-CCs~A)~ C R ]SA)I~
rhbre Rm 72-D'D.

Since -/> 11011. r(p.j)>O. The minimality, of the realization of G(S)

guarantees that (A ., B) is controllable and (-CC, A) is observable. Thus,

from Corolary .1 there exists /(s) C RVmI such that r Mv andapar-

ticular realization Is

where

J *-R 1 (B'X-DC)

and

A+2R- ID'C -R-'' 1-
X R IjCL(I+DR-D,)C -(A+BR. 1 DC), I

Since G i stable, we conclude that M _ RH. ra m .

Q.E.D.



2.3.5 Parametizing the Optimal Controller and the 12 solution:

This section combines the results of Youla's parametrization and the

coprime factorization to parameterize all stabliz ng controllers in a way that

is convenient for solving optimal Lg and L. control problems.

Let

fP12 211 [A~ B B
a l IDI D12P]C2 D21 DuJ

Suppose that neither P12 nor P2 has transmission zeros on the jr-axis

(including a* ) and. without loss of generality, D 2 DIZ = I and DaID 21 = r.

Under these assumptions, let DjL (D,2)±. and PDL (Dzj~k that is. [D2 D4

and 211" are orthogonal matrices. Then. factor P as before with F

and H given as follows:

F = -(D12TCj - B2jX)

A [-B 2 D1JC, -(A e27
X = Rdc [_ rD..LD C -(A -B C)tI

and

H = -(BID 21 - YCj7)

~ (A -BD217C.)? - CjC 2 1Y = dC[ I -B 1D-ZDjffr -(A - BDRI C2)J

Then. NV12 N2 = I and n = 1. Also, let .NLand !NLbe CIF's so that

A A.HC2 IBI-HD2

C2  D2
-DIsBIr D.
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Letting

A+B2F -B 2F B, B2

7 (. ) 1 Nm 0 A4.HCg B1 +HD21 0]
Nsi 0 J C 1+DJ -,DlzF D11  D12

0 C2 D21  0j
reduces

Kc {IlFt (P. 10) P (P ItAstmable.[}'
to

The optimal K may be recovered from Q.

Because both the I! Ila and I I, norms are unitary invariant, an altor-

native expression is possible. For any Q c RR, = 2, a ). we have

12 N ZQR21 2L

"i ! N [ 1* + N 12Q(A) [i

[Gi il 12  1 1 Q N u i)pl. iewherev1. C.1IZ All

a case is particularly simple. Since
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jIu*Q 011 G Q12 + 1101 G12 1211 G2L2G=G2 2
the optimal Q is seen immediately to be

Qw= {G11}.

Unfortunately, the a case is more complicated and will be inv.,tigated

in the next section. To obtain an explicit expression for Q.,, we need to

compute G.

Notethat(N~) Z [ I D1j F I t is convenient to compute

and

F NJ

seperately.

Caim 1 :

L1  N (A B2F)T (CI-D 22F)Dn *XB 1V'l[Nl -B_ -r D12TDII

DZC Xt DfrD1,

(Proof]:

A + 02F o Bl

N.2l I . = -(C.Dl 2 F)(C+D 2F) -(A +3 2F). -(CI+D 2 F)D 1 1

D". - D -DCXT I DjZDI J
conjugating the states by [-X OJ, we have



A+2 0 B,
0 -(A -B 2F)7 - Ci +D FP)FA~~

Since D,27(C 1 .DIRF)+B2jX = D,2jC1 +BDX+F M 0, the ClAim i3Verifled*

Q.ZD.

Claim 2:

-<A +HC2)T -CJr rB,5D

P28 zi JJ= (B + HDz2 1 D2 1 r p4*lF~v i Y 0 0

(Proof]:

A+H2 -B,+Dz1)T(21 HP21)' (B1 .wED21)P21
7l B13Z±

o ( , H 2) 1)21 PIT

conjugating by[o}

[+ HC2  00 0

[~z ~0 -(A 4HC2)f C2? r~

'which verifies the claim.

Q.E.D.

Putting these results together yields
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-(A +B2P)T (CI*D 12 F)T D11I-MI -(A 44iC2)T -C 2
7 rBD"r

B a D IIjD I1  (21 +3 D l) ' D v21
7  l IDZCrDfD 1 2 -FY 0 0J

Note that this i the cascade of two sytems with all of their poles in C+ .

Thus, projection onto H2 C leaves only the constant term. Therefore, in

the L2 case:

Theorem:

Q = D127L ID21r



P-4.2 Hankel Operats

Let G(s) be a strictly proper transfer matrix which is analytic in e s:90,

L~e., totally unstable. The Hgznkel operator associated with G will be denoted

by rc and is deftned as follows. Let

P4f : Lg.OE) -H 113C)*(1

denote the orthogonal projection. Then

rG:Hj) -. H.(jP -

There is a corresponding operator in the time domain. Let g (t) denote

the inverse Laplace transform of G(s) and let P4also denote the orthogonal

projection

P4 : L2(R) -, H2(])L? (2)

(Context distinguishes the two projections (1) and (2).) The time-domain

Hankel operator is

Thus

fg(t-)f(r)dr, t<O

(r.f)(W) 0 1o t k .

Since the Fourier transform establishes the isomorphisms



2

L2(IR) -= L2(jIR)

2(IR) H2U"R)

.H2(RL- HIR}4

we hae that

Hr 1;11 = I.l
The norm of r, can be computed by state-space methods starting from

a minimal realization of G.

Let Y and X be the controllablity and observabilty gramians,

o 0

Y:= fIABB',Afdt , X:= fAt"CC, * .t

Lemma 1. rI r, and YX have the same nonzero eigenvalues. In particular

Proof. For this proof only, drop the subscript g on r, and define

g(t) := g (-t)'. The adjoint operator ofris

r": H2(T?. " nH(R)

Pm" a *sh).

Let aeO be an eigenvalue of P'P ant Let f C H2 be a corresponding eigenvec-

tor. Then

rrf = al. (3)

Define
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h f

so that

rf z h (4a)

l h = of. (4b)

(Vectors (f h) satisfying these equations form a Schmidt pair for r.) Since

g(t) C B, t<O

g.(t) = Ble'C ', t>O

we get fr m (4) that

SCaA(I- )Bf('r)- = rah(t), t<O

fB',e'(-')C'h( ')d-• = !(t). t>0.

or, equivalently,

B'- = of (t), t>0 (Sb)

where

Jm
v := f9A'"?Bh(7)d-,.a

Now premultiply (Sa) by gA' C and integrate from -m to 0, and premultiply

(Sb) by A- B and integrate from 0 to -. is yieids

Xv aw

YW Ov.
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Finally, we get

YXV= 2. (8)

showing that a2 is an eigenvalue of YX. The reverse argument leads from (8)

to (3).

We shall be concerned with approximating G by a stable transfer func-

tion. Le., 6ne analytic in Re sa0, where the approximation is with respect to

the L. norm. Here we establish only that the distance in L.(&]) from G to

the neartmatrix In H.(jIR) equals I rt Ij.
Theorem. 1.

in! {1IiG-Q: Q CH.(i)} = Ir,I I()
and the infimur i =hiewd.

The remainder of this section is devoted to a proof of Theorem 1: only

section 5 requires some of the material to be presented next.

The inequality

in! {;I G-QII..: Q cr. )} j fli~c

is easy to establish. Fix Q in H.(jlR). Then

fsup , zf:f 2LHUM), II I 1

a sup TIPz Qf : H2 C), IR f 1

SUP IPH.f f C H2 &')



Take the Inflmum over Q.

It Is convenient at this stage to bring In L2 and H2 with respect to the

unit disk:

T: unit circle.

L2 (T, Cm1): Hilbert space of matrix-valued functions on T, with inner pro-

duct

aff
<F. G> : 1 trace dF1)(J -6i.

H2(T, C"Crnx): subspace of functions F(z) analytic in z 1<1 and satisfying

Sftace rrJ'OF(rhi)]d1d <-.

L.(T. Cr"): BEanach space of (essentially) bounded matrix-valued func-

tions, with norm

IIFII- ess;up

H.(T, Crmsx): subspace of functions analytic and bounded in I z <1.

Map the right half-plane Re skO onto the unit disk I z 11 via

s-I ( 1+2

and define

G(Z) := G()IIL (10)
Siiio

Since 0 in analytic in Re silO, including the point at -, 0 is analytic in



1z 1., i.e., G C L.(T). Associated with G is a Hankel operator. ra, defined as

follows. Again, let Jog denote the orthogonal projectior.

P* T: L(7) - T

Then

r1 : H2(T) H-. SaT>I

rw' = PR f. (ii)

Proof. Define the function

The relation between a point j w on the imaginary a and the corresponding

point 04 on the unit circle is, from (9),

This yields

= - Ijc.=)I =d'= .

his i-nplies that the mapping

f -" Vf H,(T) -4 H2UI).

where (z)=f (s) I . is an isomorohism. Similiarly.
1-s

f- P f :H 2( T) L -H 2&jR'

is an isornorphism: note that if f C H 2(T)-, then f =0 at z =, so that f =0 at
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s -1, and hence .f is analytic in Re s <0.

The lemm.a now follows from the commutative diagram

H,(T) -.I. H,(TL

r0
H2zGWR) -* 2UR

Q.E.D.

There is a matrix representation of the operator I'a. Let the power series

expansion of G be

(Actually the sum only ranges from i=- to .=O.) In (11) let the power

series expansion of f be

S/(z) = Exf

and let that of h P:= G be
-1

h(z) = z thj.

Then (11) is equivalent to the equation

2 G-G3G.. 1
T tin s tG-h G-4 oft

The matix in (12) is the familiar Hnkel matrix of the transfer matrix G(z ).
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Proof of Theorem 1. In view of Lemma 2, it suffices to show there exists a

matrix Q in H.(T) such that

I I G-4~ I'~ (13)

Let the power series expansion of Q be

Q(z) z izQ.

The left side of (13) equals the norm of the operator

f -0 (--Q).f : H(T) ". Lv(T).

The matrix representation of this operator is

* 0 6

GI-Q ,-Q.
G-Q G-(14)
G-1  G-2 ...
G.2  -3 ...

The idea in the construction of a Q to satisfy (13) is to select Q ,Q .... in turn

to minimize the norm of (14). First, choose Q, to mL"imize

G-1 G-2 ...J!

By Parrott's Theorem, the minimum equals the norm of the Hankel matrix in

(12), Le., ;a:!. Next, choose Q1 to minimize



GI-Q 1 G. -Qo .
Go-Q., G-1...

G-.1  Gg. ..

Again. the minimum equals 11ra11. Continuing in this way gives a suitable Q.

Q.E.D.



Z4.4 Best Approximatica

The transfer matrix R(s) is real-rational, proper and anti-stable, Le..

analytic in Re siO. The objective is to find Q(:), real-rational. proper, and

stable, such that 1IR-QIs inimum. Lt., equals III[. The constant term

of R can be absorbed Intc Q, so we can assume R is strictly proper. Further-

more, by adding rows or columns of zeros, we can assume R is square.

Let

Q a W 1 (to be found)

Then

G : R -Q

C€ -4-r?

So Qis optimal If 2is stable and HG'.

Lemma 5. Suppos, (SP.) s.t.

A.P. + P.As' + B,.' = 0 (5)

C, P, + D, B#' = 0 (6)

D.D.' = a I (7)
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StqPo=9a ons that (21) is stabllzcbiu. Than Q is optvnal.

Proof. Lemma 4 together with (5) and (6) =

G(s)G(-s)' = o'~I

noIGik I-= . Also, (5) 1
I + NP + 4.9.=0

Thus Lemma 3 s A stable.

Q.E.D.

Recap: objective is to construct A.BC.1.9,..PP s.t.

i) R 0 -

ii) AP, + PA,'-.. B,B'=0 (5)

iii) C A+ AB.' , (6)

iv) D.Da' = I (7)

v) P~o 0

vi) (19 stabilizable()

Constriation.

Step 1. Find a balanced realization of R:

R z -'4.

Thus controllability gramian

= observablity gramian
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0 E
where a > N1 L~e., r x multiplieity of a. Partition A.B.C accordingly

A= k11 Anls B , C=BC1 02

Step 2. Choose b s.t.

DBI' + aC1 = 0 (10)

ab'= r. (ii)

Step 3. Set

= -(a1-E2)I(EB2(12)O

"x , (-A,.B,')' (13)

= C2E. .bB2' (14)

P = E(aI-')-' (15)P., 0 oE
Vercatio of (5) - (9).

From Step 1 we have that

AP + PA' SB'= 0

A'P " PA - CC = 0.

These yield the following equations:

-aAI - uA1 ' + BIB,' = 0 (17)

-A12E - aA21' + BIB2' = 0 (18)

-A22 - ZA2i - B2 B2 ' = 0 (19)



4

-oA1' - aA, + C{C = 0 (20)

-A 2 1T - a.4+ CI'C2 = 0 (21)

-A,' - .A,, + C2'C2 = 0. (22)

To see that Step 2 is possible, Le., b exists, observe from (17) and (20)

that

BBI = CIC 1 .

Hence there exists a unitary matrix U such that

UB: + C, = 0.

Take ,=U.

To verify (5), it suffces to show that the blocks in positions (1,3), (2,3),

and (3.3) of the 3x3 block matrix A.P. + P.A,' +. ,' are ~l zero.

The (1,3)-block equals

-A12 + B,' = --A12 + B(B2'r+S2  C)(E2-U2 1I from (12)

= -A12 + (BRB 2'E -qCIC 2 )(E2 -I) "1  from (10)

= -A12 + from (18);(21)

[k12 -P A21')E - a(A21
tE + O-A12)J(E2 - ej.) from (18):(21)

- 0.

The (2,3)-block equals zero immediately from (13). Finally, the (3,3)-block

equals:

6' + P.9- (-A22- +.B 2'),P + P(-A2 + B2-9') + .9' from (13)

= -A2'E(c2I-2')-' - (aI- 2 )"IA22 from (12);(15)

-(LT I-E2) -I(ZB2 + aC2'D )B'E( 2 -E 2)-

-(o@I-.2)-'rB2(B2'. + a 7'Cc)(aj.2)-I

e



+(cr1-E)-1EB2+ aC2'P)(B2 TZ + UP' C2)(o'2I-V)

33(2 V*(0A' + ZVA2T - B2B2'E

- OcIntg + E~E + eCCjgjL2-

x 0. from (19);().

Next is the verification of (8). We have

4P, + D.Be. [-,5B,-o9C1. -,B,'-CE+e, -PD'-c,-ZP]

= [o. . -. , -c- ] from (10) and (14).

And

+C2 + a0

by.substitution from (12), (14), and (15).

Equation (7) is immediate from (11), and (8) fololow from the definition

(15) of?.

It renains to prove (9). Suppose there ezists X, Re s0. such that

doesn't have independent rows, Le.,

z.[-1 V. B-0

for some xsO. From (13) we get

'(-Ag,.9 )=XB " : = 0,

so that

7Ws implies that (-A22) s unstable, which is not possible: stability of (-A)

implies that of (-A 2 2).



2.4.5 General Dlstanoe Formula

Consider the problem of minimizin.

where

is real-rational, strictly proper, and analytic in Re O0, and Q is required to

be mal-rationaL proper, and analytic in Re sa:O. This section contains a for-

mula for tha rnimum iL i_.s of the norm of a certain operator r. Note

that the minimum is the distanco

from R to the set of all matrices of the form

I0 0I. Q C RH..

The matrix R induces a multiplication operator on L2 3 L2, Le.,

II R 1 j
2I 21 R22V 2

Defne r via

r H2 a L2 - H# e L.

+, IJ = f 01- IRo . ? II I.
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Theorem 1

The proof of this theorem is a straightforward application of the

theorem of Parrott / Davis - Kahan - Weinberger, as in Section 2. It is possi-

ble to write down a matrix representation of r, but an efficient numerical

procedure for computing its norm has not yet been developed.
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Problem Description
and Motivation



Real Control Design Problems

Actutors Computers

Software

Design Task:

Specify these control system

"behave well"



Control Designers Need Many Tools

Simulation

Sof tware
Development
Aids

Laws of Physics

Identification

Numerical
Optimization

Forn . Methods
Synthesis
Problems -Classical Feedback

Theory



Formal Synthesis Problems

a Some Element of Design Abstracted

as a Formal Mathematics Problem

w Solutions Known Mathematically and
Computable Practically

a Properties of Solutions Well-Understood

and Desirable

-- The closer the abstracted problem
matches the real design task, the
more powerful it is as a design tool

-- No abstrcted problem matches the
real thing perfectly



U

Our Formal Synthesis Problem

plant, sensors and actuators
abstacted as a linear time-invariant
finite-dimensional operator

disturbances v
and commands G

controls measurements

computer and software
abstracted as another linear time-
invariant finite-dimensional
operator

jDesign =Task

Specify K (y) to I achieve stability

" optimize performance
" provide robustness



Stabi lity

many . many
other . 6 other
inouts outputs

K

No bounded input should produce
unbounded outputs

we must achieve oloblKV

(all poles in the left hand plane)
(stabilizable/detectable design models



Perf ormance

selected v1  e' selected
Inputs G ~ 'responses

K +

Inputs in a Responses with
Specified should produce Specified Optimal
Class Properties



Performance Objectives for

A Familiar Example

0 Input Class

Sample Functions of a Stationary Random
Process with Specified Autocorrelation

white n t
noise W.i

linear operator- L
staole and minimum phase

* Response Properties
Minimum Mean-Square-Error

selected e e
responses W

linear operator - staole and

minimum phase

min E [ e(t) e(t) }



Resulting Design Model

0 itO I I P m a n

O ef P n) I1 1

Closed Loop Responses:

e =[ 1 + P12[I-KFP I KP1]r

F (P.K) n

-:'t.I; : : ,:: T :

Ii$tlll+l ll : I + ll 'llllllll



Resulting H2-Optimization Problem

Min E ( e(t)Te(t) 3
stablizlng K

T T
Ete(t) Te(t) = E I [F(P,K) n](t) [F(PK) n](t) )

= Tr F (t) F(t) T dt )

impulse response of operator F

=Tr I - F(jw) F(ji,)* dw)

frequency response of operator F

2

F(s)

F~s = Tr F(j w) F(jw)* dw

F.s 2 
--7T

= 2-NORM on the Hardy space
of stable transfer functions



An Equivalent Deterministic
Performance Objective

* Input Class

m specific time functions in L"2 representable
as impulse responses of linear systems

impulse
into j-h W.
channel I

linear operator - t
stable and min phase

* Response Properties
Minimum L2--Norm of m corresponding
weighted rusponses

selected W ie
responses 0

linear operator - stable and
minimum ohase

mmin 11e)(t,1
J=1 2

(00e T 2-NORM on the space2I e (to) Ie 0y e(t) e~t) dt of time functions



Alternate Performance Objectives

SInput Class

All possible

L 2-functions with V
bounded norm W

I1 v(t)l , 12

* Response Properties
Minimum L 2 Norm of the largest weighted

response
selected e
responses

min UP e(t)iiV 2



Resulting "H .'-Optimization Problem

*Kn SU e(t)I$stIvizing K v

up 11112 V uv II F1P2K)vlt)ll

~ I (Dr , II
L2

operator norm induced by the
2-norm on input/output time functions

= sup Fj,. 1

- I F(s)I10

co-Norm on the soace of

stable transfer functions



More General Performance Objectives ?

All possible 1 ieMnmmL-o
L -inputs with Ii-W 1
lP~~i~I~~*******6 I of the largest

J response

U a Triviml solutions (optF=O) whenever r > p

a Little engineering precedent for

a Bounded signal problems (rp~c)
indirectly covered by 5qurzre-integf-able
problems

For 5150 0perators (Doyle/Gahberg):

IHF. = 11F(t)HJ S 2M IF 42

Mc Milian Degree



Robustness

Nature's 'r7

Perturbatio

L

w

pp et

u I __ y

Knz Our Controller

*Stability must be maintained in
presence of L

*Sorne minimum performance level
must be maintained in the presence of L



Some Philosophy About Perturbations

Nature's Perturbations

" are unknown,
" are potentially catastrophic for

any control, and
• defy mathematical description

Nevertheless, we must

a represent them by mathematical
models,

4

a specify maximum levels of
severity within those models, and

a desiqn controls to work successfully
for this specification

The "Leap of Faith" that the selected representation
will protect against the real thing remains the burden
of engineers, not of mathematicians



A Plodel of
"Unstructured" Perturbations

L z)= W 0A W , z,

~stable minimum phase
LFDTI weighting operators

any LFDTI operator from a norm-bounded set

Transfer Functions in a Disk: ~~j.)

phase real
.. . . . . .

180II



* Design Model

w1 w

Overall Plant P



Robust Stabiility

System S:

F(P,K)

Given i. F(PK) stable

ii. A E 6) [stable with JA1z S]
Then systemS is stable if and only if IIFI 2

Resulting Analysis Test for Robust
Stability:

NOTE: This is a
non-conservative

S remains stable for all A E P test for stability
with respect to the

itf perturbatmcn

[ F(jw )] < for all w S set



Other Stability Robustness Tests

Set of Perturbations Corresponding
Robustness Tes

a Individual scalar perturbations
acting one at a time

= A di ag (,..0 o,O.) } F (jJC* w
Aj stable, IiAII sl fo -U U for eac

6 A single scalar perturbation
acting simultaneously in each loop

P = fA A=diag ( A, .. 6 )} p[F(jw)] < w SId stable, 116 1! S< 8

v A single multivariable perturbations

= A A stable, IAIIS } [ F(jw)I< 1- ws

w m multivariable perturbations
acting simultaneously

= A I 6" M[FCjw)]< w<

E8 -



Conservatism ?

a Tests are conservative (sufficient but not
necessary) whenever

set of true C set of modeled }

perturbations J perturbations

, 5imple norm-bounded covering sts

are often conservative

Examples

- Real parameter variations

- Deliberately neglected dynamics
(time delays, high freq lags )

-etc

a Of norm-bounded sets, induced 2-norm (D400 )

sets are least conservative

For 5150 Operators: II M IZ2  I M p

F ,-- .l I IIAH .2



Rebus t Perf ormance

LU

- t F(PPK)e

V ~F[F (POK),A]e-

afl B.2-inputs I - Smalli
with II v(t)112 <I t1 -responses

Robust Perfor'mnce SpecificationI:

F [Ft' 46 PK)1 for1 af, C



Robust Performance Snpecs

Viewed as Stability Conditions

-. ITheorml

I IF[F, (P, KA]

iff (I). FJF (PK),A] is stable, and

(2) the following system is stable

for all A EA'

v F (PK)A] e

(stability robustness theorem used backwards)



Resulting Condition for
Robu~st Stability 9IMS Robust Performance

IL Z(P,K),& stable for a1 t6 E ~

and

stable for all1 E

ioufedakte sstable for' all6l

*perturbations with a particular 2x2
block-diagonal structure



Once More for Emphasis .

* Conditions for Robust Stability and Robust

Performance are Equivalent in the induced

2-Norm (H )

_S tab le Ip " " s -

- FF(s)--

* Simultaneous Stability and Performance

are guaranteed by a Stability Condition

Stable ZAE '



A Conservative Analysis Test
for Robust Stability and Performance

System S

, z"

v , t (PK) e j

remains stable for all 60 A E (E ir

B[ Ft(jw)] <- forall w c=

(standard stability robustress-fheorem
with structure ignored)

Example: Ft =0 f][ F2 (~] I(W

Test gives 5Lability only for suPl 'I T lW-

Actually, stability is never lost

det(I-F [4o] ) det{ IfA] 0



A Tight Stability Test
for Structured Perturbations

* Set of Structured Perturbations

S= A A= ( 1 A.i, A m AM]

A.E

= ~() (~ =b1ock[,,( (s
ow) 8 .forallw andallj

* A New Function of a Matrix:
The -Structured 5ingular Value (5SY)"

jF(jw)in det[I-F(jw)LW(jw)I:O

for some w and A E X(S)

System S

is stable for all

EX(S) i ff 1[F(jw)] " forall w



Mu Makes a Difference

Example F =[0 f] '[ F(jw)] =If(jw)l

10 0

Singular Value Test gives stability for s1P If (jw )1(

Structured Singular Value Test:

9~~ F j) rlin(S det[I-F(jw),6(jw)]=O

forsomew andAE X(S)

11

- - 0

00

• Stability is maintained for all

'AEX(S) with 6=1



Mu is a Potent Tooi

Plante

* 
A ..

F(PK)



*An Ni -Optimization Problem

stabiuzing K wU ~ Fj~~~

&-Optimized Robust Stability and
Perf ormance

sup op Stability for all

Popt

CGuam-nteed Performa~nce Level

H [F, (PK),A ]f I c p,
t2 opt



Other 0-problems"

w z
V e

*Maximized Performance Subject to
Stability Robustness Constraints

Max f UJ[(K 5]1
stabilizing K 0 '0

a Maximized Stability Robustness Subject
to Performance Constraints

Max [1SPJFPS=,1
:stabillZing K w ' 0-



Summary of Formal Synthesis Problems

Class of Performance Set of Synthesis
Inputs Objective Perturbations Problem

White Noise E(e Te) A=0
Impulse ~IIle-)(t)II A 0Min 11 F(s) 12
Responses 2J

L 2-bounded spIe()1 *
Signals 2 Min 11Fs)10

E - sup -a[F(jw)])

L 2-bounded Mi 11 s
Sinl sup Ile (t) 11 2 Em X F I

r
I sup AL h Jwdn 3

- - AEX
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A Generic Classical Control Problem

All 5150

Perturbations
I w (s)l Disturbances

controlsoutputs

Design Objectives Expressed in Terms
of Desired Loo7p Shapes

" 5mall outputs in response to disturbances

[I+GKjw)]I Wdow~) I < 1

I GK(jw) I > Jdw GK>>)I

" Stabil1ity in the face of perturbat ions

IGK(iwl < W1 )I GK<<1



Desired Loop Shapes

J~d(JWlog

PerformanG Robustnes

[IGq~) Wdj0 <1W)IoKI) W1 (~



Nuitivarlaule Generalizationi

cf Loop Sha~ping 3deacj

... .. ...

Perf rmoc RobustneS5

r,"'L iI +7K~ w Wd t c) -aGK[I+GK(j w) v0W



Interpretation of Loop Shaping
In Terms of General Design Model

G IIi

F (P K)= GK (IGK 1- W1 GK (I.GK-'WdI(I+G:(f'-W. CI+GKf'-



SSV for the Classical Loop

I
•Definition

.U[i = rain([ det[ I - F(jw)A6(jw) I = 0
for some w and A E X(S)

with A= 0
0

* Some Calculations

-- I- A = I "KI G K - W- L (I+GK)- 1

is singulariff

I - 1 GK(I+GK)- W1 -L d 0+GK)' Wd

is sinqular

US ] LGK(I+C-K) I +1

Loop Shapes which satisfy
clzssical objectives tend to
minimize j



Limitations of Loop Shaping

:iAll design objectives must
* be reflected to one point irq
the loop

Loop Shaping -i
works for this
.multivariable

loop ...

but not G

for this
mul varo b .:
loop .. !_- K -" • !



What Goes Wrong ?

w -w p

F (POK) =-[KG(I+KG)'IW1 K(I+GK)-'Wd'1 fK][G(I+KGr-'W, (I+GK)'Wd]

G (I+ KG)'W, (I+GKf-'Wd ['

I-F A is nonsingular if f

I-G (I+KGf- 'W1&IK - (I+GKf-' Wd~d is nonsingularl

Classical objectives do not minimizeI unless condition of K remains small



An Aside: The Scaling Implicit in [1

F(POK)=[ KG(I+KGVI'W, K(I+GKV'W d
G(I+KG)" 1W, (I+GK)'Wdj

-KI (I+GKY 1' [Gw, Wd

* To compute ji, find the minimizing D
for O[DF D" ]

4 Do =[K (I+.iGdKf-' [.LGW1 WdI

od] 
0]

, Equivalent to a change of "units"
in the problem



Decoupled Flight Path / Attitude Control

NNo

8e8 
(S

Angle-of-Attack

Velocity Vector

" -- e -Pitch Attitude



Decoupled Flight Path I Attitude Control

In Our General Framework

v crnds[]

W G(s) 
V0md c

W 
2

{ [ Ai rframen:! e

K(s) responses

Ft(PK) [WKG(I+KG) WIK(I+GK)-' ]
6W 2 G ([+KG)-l W2(I GK)-'



Selected Weighting Functions

lo _______ 
_______ 

______________

-77177

C q4IL 1

W2I+G)'WKIG)



An Aside : Weights are the "Knobs"
of the Formal Synthesis Problem

W7P

LII

IK



Selected Desired Loop Shape

z jL4 Ig2

VNKG



ZU.

4) cm
0V

m_____fill I A I C
woo

WOO.
ow0

CU d



Cc

o Uo

Oft a

L lb

L i

7SS
< l

C) .or



Implications

* The Loop-Shaping Design is Robustly Stabe

!1 WKG(+KG)'II < I

* Performance is Satisfactory for the
Nominal Plant

II W1(I+GK)j I

BUI there exists a Awithjj&j. 1/IS
such that

* The design does not have robust
S de IgI ivl i___, _
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Overview of Synthesis

Solutions

b
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Summary of Formal Synthesis Problems

Class of Performance Set of Synthesis
Inputs Objective Perturbations Problem

White Noise E(e Te) A = 0 Min J1 F(s) 1J

Impulse I Ile3 (t) 11 A =2
Responses 2 (fTr[ F*F I dwJ 1/ 2

L2z- bounded spIe()1Signals 2 Min i1 F(s) 1100

Eu 43~tI A0 su=[0~w'

to,

IL -bounded ii iL2 a sup le(t) II A E X Min II F(s)II
Signals 2 J

AE x ~ (su.p p(F(jw) 3



Status of Synthesis Solutions

a The H2-Problem

Solutions completely known
(Parallel Wiener-Hopf / LOG Solution )

a The H -Problem

Solutions available arbitrarily close
to optimal

a The H -Problem

Approximate Solutions available through
Iteration

Min Min D D(s)F(s) (s)- II }
D L K II lI



The k .- Solution Process cC=2,o0

Min jF2 (PDK)H
5tabilizing K

!pq F P +P K(I-PK)'P,
Parametrlzwion 1

T+T Q T211TT=

unitryU inverience

Min R+Q R
QERN~ al R21 R 2 C

Projection S. ~ , Dilation

Mi R Mirln IIG+I
Q~IH il+Q"2 QERHNO

Q=-P~HO CR1  etApprox
2 .of L.

Re-Parametrization

opt



Parametrization Highlights.

V e

PT~s)

Residu a]

T2 (s) =(residual) /u =0 (separation theorem)

F (TQ) =TW1 T 12 Q (I-T22 Q)- IT21

=TI I+Ti 2 Q T 21



Parametrization Highlights

Y oula Parametrization of
all Stabilizing Controllers

K(s) =(U 0+MG X)0V+NO)-'

where =2 NM K = U V1 stabilizes, Q stable,P2 200 

*Observer-Based Compensator (OBC)
with added stable dynamics

B Y yResidual 
y-9

2C

AU

HF



Exploiting Unitary Invariance

K(s)
9Residualy-

Let H and F be Riccati Gains [ 12 121] [T12 1~2]

Then [T1 Tt2  an [T,,[mf
can be made unitary 21TI TI

T11+T 2QT2  - [T1 Tt2  [TI+T 2OT T21 -

R 11+Q R 12 12
11' 21 ZZ II

TH4E PRICE: unstable functions



a

Projections

R11+0 R 12  -

R 21 R22 2

00 1,

Tr(Ri 0). (R -iQ)+ Tr(R* R )+ Tr(R R )+ Tr(R R )d]
12 12 21 21 22 22

it is sufficient to minimize 11 R 11 + 1

turns out to
be entireiy unstable must be

stable

US I, opt -
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